Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein - PubMed (original) (raw)

. 1989 Jun 15;142(12):4428-34.

Affiliations

Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein

R I Lehrer et al. J Immunol. 1989.

Abstract

We examined the bactericidal activity of two proteins that are abundant in the cytoplasmic granules of human eosinophils, major basic protein (MBP) and eosinophil cationic protein (ECP). Unlike the human neutrophil's peptide defensins, both MBP and ECP killed stationary phase Staphylococcus aureus 502A in a simple nutrient-free buffer solution. Although MBP also killed Escherichia coli ML-35 with considerable efficacy under these experimental conditions, the in vitro activity of ECP against E. coli was considerably enhanced if mid-logarithmic phase bacteria replaced stationary phase organisms or if the assay medium was enriched with trypticase soy broth. The antibacterial activity of both eosinophil proteins was modulated by incubation time, protein concentration, temperature and pH. A pBR322-transformed derivative of E. coli ML-35 was used to examine the effects of ECP and MBP on integrity of the bacterial inner membrane (IM) and outer membrane. Although both MBP and ECP caused outer and inner membrane permeabilization when nutrients were present, only MBP was effective under nutrient-free conditions. Two proton ionophores (DNP and carbonyl cyanide m-chlorophenyl hydrazone) protected E. coli from the bactericidal effects of ECP but not from MBP. These findings establish that MBP and ECP have bactericidal properties and suggest that these proteins kill E. coli by similar but nonidentical mechanisms marked by an attack on the target cell's membranes. In view of evidence that high concentrations of ECP and MBP exist in cytoplasmic granules whose contents are translocated to phagocytic vacuoles, we suggest that MBP and ECP contribute to the eosinophil's ability to kill ingested bacteria.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources