Personalized Nutrition by Prediction of Glycemic Responses - PubMed (original) (raw)
Randomized Controlled Trial
. 2015 Nov 19;163(5):1079-1094.
doi: 10.1016/j.cell.2015.11.001.
Tal Korem 1, Niv Zmora 2, David Israeli 3, Daphna Rothschild 1, Adina Weinberger 1, Orly Ben-Yacov 1, Dar Lador 1, Tali Avnit-Sagi 1, Maya Lotan-Pompan 1, Jotham Suez 4, Jemal Ali Mahdi 4, Elad Matot 1, Gal Malka 1, Noa Kosower 1, Michal Rein 1, Gili Zilberman-Schapira 4, Lenka Dohnalová 4, Meirav Pevsner-Fischer 4, Rony Bikovsky 1, Zamir Halpern 5, Eran Elinav 6, Eran Segal 7
Affiliations
- PMID: 26590418
- DOI: 10.1016/j.cell.2015.11.001
Free article
Randomized Controlled Trial
Personalized Nutrition by Prediction of Glycemic Responses
David Zeevi et al. Cell. 2015.
Free article
Abstract
Elevated postprandial blood glucose levels constitute a global epidemic and a major risk factor for prediabetes and type II diabetes, but existing dietary methods for controlling them have limited efficacy. Here, we continuously monitored week-long glucose levels in an 800-person cohort, measured responses to 46,898 meals, and found high variability in the response to identical meals, suggesting that universal dietary recommendations may have limited utility. We devised a machine-learning algorithm that integrates blood parameters, dietary habits, anthropometrics, physical activity, and gut microbiota measured in this cohort and showed that it accurately predicts personalized postprandial glycemic response to real-life meals. We validated these predictions in an independent 100-person cohort. Finally, a blinded randomized controlled dietary intervention based on this algorithm resulted in significantly lower postprandial responses and consistent alterations to gut microbiota configuration. Together, our results suggest that personalized diets may successfully modify elevated postprandial blood glucose and its metabolic consequences. VIDEO ABSTRACT.
Trial registration: ClinicalTrials.gov NCT01892956.
Copyright © 2015 Elsevier Inc. All rights reserved.
Comment in
- Siri, What Should I Eat?
Jumpertz von Schwartzenberg R, Turnbaugh PJ. Jumpertz von Schwartzenberg R, et al. Cell. 2015 Nov 19;163(5):1051-1052. doi: 10.1016/j.cell.2015.11.012. Cell. 2015. PMID: 26590412 - Nutrition: Glycaemic response variation suggests value of personalized diets.
Phillips R. Phillips R. Nat Rev Endocrinol. 2016 Jan;12(1):6. doi: 10.1038/nrendo.2015.209. Epub 2015 Nov 27. Nat Rev Endocrinol. 2016. PMID: 26610413 No abstract available. - Can Your Microbiome Tell You What to Eat?
Vanamala JK, Knight R, Spector TD. Vanamala JK, et al. Cell Metab. 2015 Dec 1;22(6):960-1. doi: 10.1016/j.cmet.2015.11.009. Cell Metab. 2015. PMID: 26636494 - Microbiome: Microbiota-based nutrition plans.
Nunes-Alves C. Nunes-Alves C. Nat Rev Microbiol. 2016 Jan;14(1):1. doi: 10.1038/nrmicro.2015.10. Epub 2015 Dec 7. Nat Rev Microbiol. 2016. PMID: 26639778 No abstract available. - Nutrition: A personal forecast.
Sonnenburg ED, Sonnenburg JL. Sonnenburg ED, et al. Nature. 2015 Dec 24;528(7583):484-6. doi: 10.1038/528484a. Nature. 2015. PMID: 26701049 No abstract available. - Getting Personal About Nutrition.
Noecker C, Borenstein E. Noecker C, et al. Trends Mol Med. 2016 Feb;22(2):83-85. doi: 10.1016/j.molmed.2015.12.010. Epub 2016 Jan 14. Trends Mol Med. 2016. PMID: 26776092 Free PMC article. - Personalized nutrition by prediction of glycaemic responses: fact or fantasy?
Wolever TM. Wolever TM. Eur J Clin Nutr. 2016 Apr;70(4):411-3. doi: 10.1038/ejcn.2016.31. Eur J Clin Nutr. 2016. PMID: 27050901 No abstract available. - Rich data sets could end costly drug discovery.
Segal E. Segal E. Nature. 2020 Jan;577(7792):S19. doi: 10.1038/d41586-020-00200-7. Nature. 2020. PMID: 31996830 No abstract available.
Similar articles
- Siri, What Should I Eat?
Jumpertz von Schwartzenberg R, Turnbaugh PJ. Jumpertz von Schwartzenberg R, et al. Cell. 2015 Nov 19;163(5):1051-1052. doi: 10.1016/j.cell.2015.11.012. Cell. 2015. PMID: 26590412 - Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomized dietary intervention pilot trial.
Rein M, Ben-Yacov O, Godneva A, Shilo S, Zmora N, Kolobkov D, Cohen-Dolev N, Wolf BC, Kosower N, Lotan-Pompan M, Weinberger A, Halpern Z, Zelber-Sagi S, Elinav E, Segal E. Rein M, et al. BMC Med. 2022 Feb 9;20(1):56. doi: 10.1186/s12916-022-02254-y. BMC Med. 2022. PMID: 35135549 Free PMC article. Clinical Trial. - Model of personalized postprandial glycemic response to food developed for an Israeli cohort predicts responses in Midwestern American individuals.
Mendes-Soares H, Raveh-Sadka T, Azulay S, Ben-Shlomo Y, Cohen Y, Ofek T, Stevens J, Bachrach D, Kashyap P, Segal L, Nelson H. Mendes-Soares H, et al. Am J Clin Nutr. 2019 Jul 1;110(1):63-75. doi: 10.1093/ajcn/nqz028. Am J Clin Nutr. 2019. PMID: 31095300 Free PMC article. - A New Approach to Personalized Nutrition: Postprandial Glycemic Response and its Relationship to Gut Microbiota.
Guizar-Heredia R, Noriega LG, Rivera AL, Resendis-Antonio O, Guevara-Cruz M, Torres N, Tovar AR. Guizar-Heredia R, et al. Arch Med Res. 2023 Apr;54(3):176-188. doi: 10.1016/j.arcmed.2023.02.007. Epub 2023 Mar 27. Arch Med Res. 2023. PMID: 36990891 Review. - Low glycemic index foods should play a role in improving overall glycemic control in type-1 and type-2 diabetic patients and, more specifically, in correcting excessive postprandial hyperglycemia.
Slama G, Elgrably F, Kabir M, Rizkalla S. Slama G, et al. Nestle Nutr Workshop Ser Clin Perform Programme. 2006;11:73-81. doi: 10.1159/000094407. Nestle Nutr Workshop Ser Clin Perform Programme. 2006. PMID: 16820732 Review.
Cited by
- Environmental Influences on the Human Microbiome and Implications for Noncommunicable Disease.
Ahn J, Hayes RB. Ahn J, et al. Annu Rev Public Health. 2021 Apr 1;42:277-292. doi: 10.1146/annurev-publhealth-012420-105020. Annu Rev Public Health. 2021. PMID: 33798404 Free PMC article. Review. - Serum glucose, lactate dehydrogenase and hypertension are mediators of the effect of body mass index on severity of COVID-19.
Yan H, Vijay A, Jiang F, Zheng N, Hu Y, Ye H, Ollivere B, Cai T, Valdes AM, Aithal GP. Yan H, et al. Endocrinol Diabetes Metab. 2021 Feb 16;4(2):e00215. doi: 10.1002/edm2.215. eCollection 2021 Apr. Endocrinol Diabetes Metab. 2021. PMID: 33851033 Free PMC article. - Mirror, mirror on the wall: which microbiomes will help heal them all?
Nayak RR, Turnbaugh PJ. Nayak RR, et al. BMC Med. 2016 May 4;14:72. doi: 10.1186/s12916-016-0622-6. BMC Med. 2016. PMID: 27146150 Free PMC article. - Big data and personalized nutrition: the key evidence gaps.
Guess N. Guess N. Nat Metab. 2024 Aug;6(8):1420-1422. doi: 10.1038/s42255-023-00960-2. Nat Metab. 2024. PMID: 38278944 No abstract available. - Nonalcoholic Fatty Liver Disease and the Intestinal Microbiome: An Inseparable Link.
Effenberger M, Grander C, Grabherr F, Tilg H. Effenberger M, et al. J Clin Transl Hepatol. 2023 Dec 28;11(7):1498-1507. doi: 10.14218/JCTH.2023.00069. Epub 2023 Sep 15. J Clin Transl Hepatol. 2023. PMID: 38161503 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical