Fractionation of yeast organelles - PubMed (original) (raw)
Fractionation of yeast organelles
N C Walworth et al. Methods Cell Biol. 1989.
Abstract
In summary, organelles of the secretory pathway can be effectively separated from one another using differential centrifugation followed by sucrose density gradient fractionation of wild-type or vesicle-accumulating mutant yeast cells. Up to 10-fold enrichment of the plasma membrane fraction is obtained, and resolution of the peak fractions of several organelles allows one to localize specific proteins to particular components of the pathway. Additionally, a highly purified population of constitutive secretory vesicles can be isolated from the 100,000 g membrane fraction of sec 6-4 cells on a Sephacryl S-1000 column. The success of this procedure is due to the homogeneous size of the vesicles and the high concentration of vesicles accumulated in the sec 6-4 cells. From other laboratories, methods have been described for the isolation of other organelles including the vacuole (Wiemken, 1975), plasma membrane (Tschopp and Schekman, 1983), and nuclei (Mann and Mecke, 1980), as well as an alternative procedure for the purification of secretory vesicles from yeast (Holcomb et al., 1987). For the localization of proteins to particular organelles the ability to lyse cells osmotically is an important improvement over the glass bead lysis procedure. The shear forces generated during glass bead lysis could potentially remove proteins from the surface of organelles that otherwise would be membrane-attached, causing them to appear soluble. Similarly, because the conditions required for stabilizing the association of a protein with a membrane can be quite variable depending on the lysis buffer, confirmation of localization using alternative schemes is prudent. With the advent of such techniques as confocal immunofluorescent microscopy and immunoelectron microscopy, effective methods for confirming localizations are becoming available.
Similar articles
- Isolation of subcellular fractions from the yeast Saccharomyces cerevisiae.
Rieder SE, Emr SD. Rieder SE, et al. Curr Protoc Cell Biol. 2001 May;Chapter 3:Unit 3.8. doi: 10.1002/0471143030.cb0308s08. Curr Protoc Cell Biol. 2001. PMID: 18228360 - Analysis of polypeptide transit through yeast secretory pathway.
Franzusoff A, Rothblatt J, Schekman R. Franzusoff A, et al. Methods Enzymol. 1991;194:662-74. doi: 10.1016/0076-6879(91)94048-h. Methods Enzymol. 1991. PMID: 2005814 No abstract available. - Isolation of secretory vesicles from Saccharomyces cerevisiae.
Holcomb CL, Etcheverry T, Schekman R. Holcomb CL, et al. Anal Biochem. 1987 Nov 1;166(2):328-34. doi: 10.1016/0003-2697(87)90581-1. Anal Biochem. 1987. PMID: 3324821 - Analytical subcellular fractionation of endosomal compartments in rat hepatocytes.
Courtoy PJ. Courtoy PJ. Subcell Biochem. 1993;19:29-68. doi: 10.1007/978-1-4615-3026-8_2. Subcell Biochem. 1993. PMID: 8470143 Review. No abstract available. - Functional morphology of the secretory pathway organelles in yeast.
Vorísek J. Vorísek J. Microsc Res Tech. 2000 Dec 15;51(6):530-46. doi: 10.1002/1097-0029(20001215)51:6<530::AID-JEMT4>3.0.CO;2-Q. Microsc Res Tech. 2000. PMID: 11169856 Review.
Cited by
- AAA ATPases regulate membrane association of yeast oxysterol binding proteins and sterol metabolism.
Wang P, Zhang Y, Li H, Chieu HK, Munn AL, Yang H. Wang P, et al. EMBO J. 2005 Sep 7;24(17):2989-99. doi: 10.1038/sj.emboj.7600764. Epub 2005 Aug 11. EMBO J. 2005. PMID: 16096648 Free PMC article. - In vitro reconstitution of intercompartmental protein transport to the yeast vacuole.
Vida TA, Graham TR, Emr SD. Vida TA, et al. J Cell Biol. 1990 Dec;111(6 Pt 2):2871-84. doi: 10.1083/jcb.111.6.2871. J Cell Biol. 1990. PMID: 2269659 Free PMC article. - Purification of a vesicle-vacuole fraction functionally linked to aflatoxin synthesis in Aspergillus parasiticus.
Chanda A, Roze LV, Pastor A, Frame MK, Linz JE. Chanda A, et al. J Microbiol Methods. 2009 Jul;78(1):28-33. doi: 10.1016/j.mimet.2009.03.014. Epub 2009 Apr 7. J Microbiol Methods. 2009. PMID: 19358865 Free PMC article. - GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats.
Flick JS, Johnston M. Flick JS, et al. Mol Cell Biol. 1991 Oct;11(10):5101-12. doi: 10.1128/mcb.11.10.5101-5112.1991. Mol Cell Biol. 1991. PMID: 1922034 Free PMC article. - Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis.
Bowser R, Müller H, Govindan B, Novick P. Bowser R, et al. J Cell Biol. 1992 Sep;118(5):1041-56. doi: 10.1083/jcb.118.5.1041. J Cell Biol. 1992. PMID: 1512289 Free PMC article.