High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier - PubMed (original) (raw)
. 1989 Dec;16(5-6):339-46.
doi: 10.1007/BF00340712.
Affiliations
- PMID: 2692852
- DOI: 10.1007/BF00340712
High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier
R H Schiestl et al. Curr Genet. 1989 Dec.
Abstract
A method, using LiAc to yield competent cells, is described that increased the efficiency of genetic transformation of intact cells of Saccharomyces cerevisiae to more than 1 X 10(5) transformants per microgram of vector DNA and to 1.5% transformants per viable cell. The use of single stranded, or heat denaturated double stranded, nucleic acids as carrier resulted in about a 100 fold higher frequency of transformation with plasmids containing the 2 microns origin of replication. Single stranded DNA seems to be responsible for the effect since M13 single stranded DNA, as well as RNA, was effective. Boiled carrier DNA did not yield any increased transformation efficiency using spheroplast formation to induce DNA uptake, indicating a difference in the mechanism of transformation with the two methods.
Similar articles
- Transformation of yeast spheroplasts without cell fusion.
Burgers PM, Percival KJ. Burgers PM, et al. Anal Biochem. 1987 Jun;163(2):391-7. doi: 10.1016/0003-2697(87)90240-5. Anal Biochem. 1987. PMID: 3310730 - Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure.
Gietz RD, Schiestl RH, Willems AR, Woods RA. Gietz RD, et al. Yeast. 1995 Apr 15;11(4):355-60. doi: 10.1002/yea.320110408. Yeast. 1995. PMID: 7785336 - Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism.
Kawai S, Hashimoto W, Murata K. Kawai S, et al. Bioeng Bugs. 2010 Nov-Dec;1(6):395-403. doi: 10.4161/bbug.1.6.13257. Bioeng Bugs. 2010. PMID: 21468206 Free PMC article. Review. - Yeast colony hybridization.
Kleinman MJ. Kleinman MJ. Methods Mol Biol. 1996;53:189-92. doi: 10.1385/0-89603-319-8:189. Methods Mol Biol. 1996. PMID: 8924980 Review. No abstract available.
Cited by
- Pleiotropic effects of PAB1 deletion: Extensive changes in the yeast proteome, transcriptome, and translatome.
Mangkalaphiban K, Ganesan R, Jacobson A. Mangkalaphiban K, et al. PLoS Genet. 2024 Sep 5;20(9):e1011392. doi: 10.1371/journal.pgen.1011392. eCollection 2024 Sep. PLoS Genet. 2024. PMID: 39236083 Free PMC article. - Live-cell analysis of IMPDH protein levels during yeast colony growth provides insights into the regulation of GTP synthesis.
Shand EL, Sweeney K, Sundling KE, McClean MN, Brow DA. Shand EL, et al. mBio. 2024 Aug 14;15(8):e0102124. doi: 10.1128/mbio.01021-24. Epub 2024 Jun 28. mBio. 2024. PMID: 38940616 Free PMC article. - Chemical transformation of the multibudding yeast, Aureobasidium pullulans.
Wirshing ACE, Petrucco CA, Lew DJ. Wirshing ACE, et al. J Cell Biol. 2024 Oct 7;223(10):e202402114. doi: 10.1083/jcb.202402114. Epub 2024 Jun 27. J Cell Biol. 2024. PMID: 38935076 - Mapping the structural landscape of the yeast Ty3 retrotransposon RNA genome.
Andrzejewska-Romanowska A, Gumna J, Tykwińska E, Pachulska-Wieczorek K. Andrzejewska-Romanowska A, et al. Nucleic Acids Res. 2024 Sep 9;52(16):9821-9837. doi: 10.1093/nar/gkae494. Nucleic Acids Res. 2024. PMID: 38864374 Free PMC article. - Receptor-mediated cargo hitchhiking on bulk autophagy.
Takeda E, Isoda T, Hosokawa S, Oikawa Y, Hotta-Ren S, May AI, Ohsumi Y. Takeda E, et al. EMBO J. 2024 Aug;43(15):3116-3140. doi: 10.1038/s44318-024-00091-8. Epub 2024 May 16. EMBO J. 2024. PMID: 38755257 Free PMC article.
References
- Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035-9 - PubMed
- J Mol Biol. 1983 Jun 5;166(4):557-80 - PubMed
- Curr Genet. 1988;13(1):21-3 - PubMed
- Gene. 1987;57(2-3):267-72 - PubMed
- Yeast. 1987 Jun;3(2):131-7 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources