Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells - PubMed (original) (raw)
Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells
Susan M Byrne et al. Curr Protoc Stem Cell Biol. 2015.
Abstract
CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.
Keywords: CRISPR / Cas9 nuclease; gene targeting; genome engineering; human induced pluripotent stem cells; transfection.
Conflict of interest statement
The authors report no conflicts of interest.
Similar articles
- Genome editing in human stem cells.
Byrne SM, Mali P, Church GM. Byrne SM, et al. Methods Enzymol. 2014;546:119-38. doi: 10.1016/B978-0-12-801185-0.00006-4. Methods Enzymol. 2014. PMID: 25398338 Free PMC article. - Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
Yumlu S, Stumm J, Bashir S, Dreyer AK, Lisowski P, Danner E, Kühn R. Yumlu S, et al. Methods. 2017 May 15;121-122:29-44. doi: 10.1016/j.ymeth.2017.05.009. Epub 2017 May 15. Methods. 2017. PMID: 28522326 - Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system.
Lyu C, Shen J, Wang R, Gu H, Zhang J, Xue F, Liu X, Liu W, Fu R, Zhang L, Li H, Zhang X, Cheng T, Yang R, Zhang L. Lyu C, et al. Stem Cell Res Ther. 2018 Apr 6;9(1):92. doi: 10.1186/s13287-018-0839-8. Stem Cell Res Ther. 2018. PMID: 29625575 Free PMC article. - Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.
Horii T, Hatada I. Horii T, et al. Endocr J. 2016;63(3):213-9. doi: 10.1507/endocrj.EJ15-0734. Epub 2016 Jan 6. Endocr J. 2016. PMID: 26743444 Review. - CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
Zhang Y, Sastre D, Wang F. Zhang Y, et al. Curr Stem Cell Res Ther. 2018;13(4):243-251. doi: 10.2174/1574888X13666180214124800. Curr Stem Cell Res Ther. 2018. PMID: 29446747 Review.
Cited by
- Stem cell modeling of nervous system tumors.
Furnari FB, Anastasaki C, Bian S, Fine HA, Koga T, Le LQ, Rodriguez FJ, Gutmann DH. Furnari FB, et al. Dis Model Mech. 2024 Feb 1;17(2):dmm050533. doi: 10.1242/dmm.050533. Epub 2024 Feb 14. Dis Model Mech. 2024. PMID: 38353122 Free PMC article. Review. - Modeling RET-Rearranged Non-Small Cell Lung Cancer (NSCLC): Generation of Lung Progenitor Cells (LPCs) from Patient-Derived Induced Pluripotent Stem Cells (iPSCs).
Marcoux P, Hwang JW, Desterke C, Imeri J, Bennaceur-Griscelli A, Turhan AG. Marcoux P, et al. Cells. 2023 Dec 15;12(24):2847. doi: 10.3390/cells12242847. Cells. 2023. PMID: 38132167 Free PMC article. - Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder.
de Jong JO, Llapashtica C, Genestine M, Strauss K, Provenzano F, Sun Y, Zhu H, Cortese GP, Brundu F, Brigatti KW, Corneo B, Migliori B, Tomer R, Kushner SA, Kellendonk C, Javitch JA, Xu B, Markx S. de Jong JO, et al. Nat Commun. 2021 Sep 1;12(1):4087. doi: 10.1038/s41467-021-24358-4. Nat Commun. 2021. PMID: 34471112 Free PMC article. - Microfluidic processing of stem cells for autologous cell replacement.
Stone NE, Voigt AP, Mullins RF, Sulchek T, Tucker BA. Stone NE, et al. Stem Cells Transl Med. 2021 Oct;10(10):1384-1393. doi: 10.1002/sctm.21-0080. Epub 2021 Jun 22. Stem Cells Transl Med. 2021. PMID: 34156760 Free PMC article. Review. - Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease.
Kathiriya IS, Rao KS, Iacono G, Devine WP, Blair AP, Hota SK, Lai MH, Garay BI, Thomas R, Gong HZ, Wasson LK, Goyal P, Sukonnik T, Hu KM, Akgun GA, Bernard LD, Akerberg BN, Gu F, Li K, Speir ML, Haeussler M, Pu WT, Stuart JM, Seidman CE, Seidman JG, Heyn H, Bruneau BG. Kathiriya IS, et al. Dev Cell. 2021 Feb 8;56(3):292-309.e9. doi: 10.1016/j.devcel.2020.11.020. Epub 2020 Dec 14. Dev Cell. 2021. PMID: 33321106 Free PMC article.
References
- Aach J, Mali P, Church GM. CasFinder: Flexible algorithm for identifying specific Cas9 targets in genomes. bioRxiv 2014
- Bollag RJ, Waldman AS, Liskay RM. Homologous recombination in mammalian cells. Annual review of genetics. 1989;23:199–225. - PubMed
- Canver MC, Bauer DE, Dass A, Yien YY, Chung J, Masuda T, Maeda T, Paw BH, Orkin SH. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. Journal of Biological Chemistry. 2014;289:21312–21324. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources