Integrating Everything: The Molecule Selection Toolkit, a System for Compound Prioritization in Drug Discovery - PubMed (original) (raw)
Review
. 2016 Aug 11;59(15):6999-7010.
doi: 10.1021/acs.jmedchem.5b01338. Epub 2016 Mar 22.
Affiliations
- PMID: 26950497
- DOI: 10.1021/acs.jmedchem.5b01338
Review
Integrating Everything: The Molecule Selection Toolkit, a System for Compound Prioritization in Drug Discovery
David J Cummins et al. J Med Chem. 2016.
Abstract
In recent years there have been numerous papers on the topic of multiattribute optimization in pharmaceutical discovery chemistry, applied to compound prioritization. Many solutions proposed are static in nature; fixed functions are proposed for general purpose use. As needs change, these are modified and proposed as the latest enhancement. Rather than producing one more set of static functions, this work proposes a flexible approach to prioritizing compounds. Most published approaches also lack a design component. This work describes a comprehensive implementation that includes predictive modeling, multiattribute optimization, and modern statistical design. This gives a complete package for effectively prioritizing compounds for lead generation and lead optimization. The approach described has been used at our company in various stages of discovery since 2001. An adaptable system alleviates the need for different static solutions, each of which inevitably must be updated as the needs of a project change.
Similar articles
- Design and implementation of an automated compound management system in support of lead optimization.
Quintero C, Kariv I. Quintero C, et al. J Biomol Screen. 2009 Jun;14(5):499-508. doi: 10.1177/1087057109335326. Epub 2009 Jun 1. J Biomol Screen. 2009. PMID: 19487770 - Improving Drug Design: An Update on Recent Applications of Efficiency Metrics, Strategies for Replacing Problematic Elements, and Compounds in Nontraditional Drug Space.
Meanwell NA. Meanwell NA. Chem Res Toxicol. 2016 Apr 18;29(4):564-616. doi: 10.1021/acs.chemrestox.6b00043. Epub 2016 Mar 14. Chem Res Toxicol. 2016. PMID: 26974882 Review. - Hit finding: towards 'smarter' approaches.
Langer T, Hoffmann R, Bryant S, Lesur B. Langer T, et al. Curr Opin Pharmacol. 2009 Oct;9(5):589-93. doi: 10.1016/j.coph.2009.06.001. Epub 2009 Jul 1. Curr Opin Pharmacol. 2009. PMID: 19576852 Review. - Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.
Meanwell NA. Meanwell NA. Chem Res Toxicol. 2011 Sep 19;24(9):1420-56. doi: 10.1021/tx200211v. Epub 2011 Jul 26. Chem Res Toxicol. 2011. PMID: 21790149 Review. - Novel trends in high-throughput screening.
Mayr LM, Bojanic D. Mayr LM, et al. Curr Opin Pharmacol. 2009 Oct;9(5):580-8. doi: 10.1016/j.coph.2009.08.004. Epub 2009 Sep 21. Curr Opin Pharmacol. 2009. PMID: 19775937 Review.
Cited by
- Screening of antibacterial compounds with novel structure from the FDA approved drugs using machine learning methods.
Li WX, Tong X, Yang PP, Zheng Y, Liang JH, Li GH, Liu D, Guan DG, Dai SX. Li WX, et al. Aging (Albany NY). 2022 Feb 12;14(3):1448-1472. doi: 10.18632/aging.203887. Epub 2022 Feb 12. Aging (Albany NY). 2022. PMID: 35150482 Free PMC article. - A simple model to solve a complex drug toxicity problem.
Dixit VA. Dixit VA. Toxicol Res (Camb). 2018 Nov 29;8(2):157-171. doi: 10.1039/c8tx00261d. eCollection 2019 Mar 1. Toxicol Res (Camb). 2018. PMID: 30997019 Free PMC article. - Mothra: Multiobjective de novo Molecular Generation Using Monte Carlo Tree Search.
Suzuki T, Ma D, Yasuo N, Sekijima M. Suzuki T, et al. J Chem Inf Model. 2024 Oct 14;64(19):7291-7302. doi: 10.1021/acs.jcim.4c00759. Epub 2024 Sep 25. J Chem Inf Model. 2024. PMID: 39317969 Free PMC article. - Efficient multi-objective molecular optimization in a continuous latent space.
Winter R, Montanari F, Steffen A, Briem H, Noé F, Clevert DA. Winter R, et al. Chem Sci. 2019 Jul 8;10(34):8016-8024. doi: 10.1039/c9sc01928f. eCollection 2019 Sep 14. Chem Sci. 2019. PMID: 31853357 Free PMC article. - Selective Inhibitor Design for Kinase Homologs Using Multiobjective Monte Carlo Tree Search.
Yoshizawa T, Ishida S, Sato T, Ohta M, Honma T, Terayama K. Yoshizawa T, et al. J Chem Inf Model. 2022 Nov 28;62(22):5351-5360. doi: 10.1021/acs.jcim.2c00787. Epub 2022 Nov 5. J Chem Inf Model. 2022. PMID: 36334094 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials