Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers - PubMed (original) (raw)
. 2016 Jun;1858(6):1189-95.
doi: 10.1016/j.bbamem.2016.03.013. Epub 2016 Mar 11.
Affiliations
- PMID: 26975250
- DOI: 10.1016/j.bbamem.2016.03.013
Free article
Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers
Sara García-Linares et al. Biochim Biophys Acta. 2016 Jun.
Free article
Abstract
Sticholysin I and II (StnI and StnII) are pore-forming toxins that use sphingomyelin (SM) for membrane binding. We examined how hydrogen bonding among membrane SMs affected the StnI- and StnII-induced pore formation process, resulting in bilayer permeabilization. We compared toxin-induced permeabilization in bilayers containing either SM or dihydro-SM (lacking the trans Δ(4) double bond of the long-chain base), since their hydrogen-bonding properties are known to differ greatly. We observed that whereas both StnI and StnII formed pores in unilamellar vesicles containing palmitoyl-SM or oleoyl-SM, the toxins failed to similarly form pores in vesicles prepared from dihydro-PSM or dihydro-OSM. In supported bilayers containing OSM, StnII bound efficiently, as determined by surface plasmon resonance. However, StnII binding to supported bilayers prepared from dihydro-OSM was very low under similar experimental conditions. The association of the positively charged StnII (at pH7.0) with unilamellar vesicles prepared from OSM led to a concentration-dependent increase in vesicle charge, as determined from zeta-potential measurements. With dihydro-OSM vesicles, a similar response was not observed. Benzyl alcohol, which is a small hydrogen-bonding compound with affinity to lipid bilayer interfaces, strongly facilitated StnII-induced pore formation in dihydro-OSM bilayers, suggesting that hydrogen bonding in the interfacial region originally prevented StnII from membrane binding and pore formation. We conclude that interfacial hydrogen bonding was able to affect the membrane association of StnI- and StnII, and hence their pore forming capacity. Our results suggest that other types of protein interactions in bilayers may also be affected by hydrogen-bonding origination from SMs.
Keywords: Permeabilization; Sphingomyelinase; Sticholysin; Surface plasmon resonance.
Copyright © 2016 Elsevier B.V. All rights reserved.
Similar articles
- Regulation of Sticholysin II-Induced Pore Formation by Lipid Bilayer Composition, Phase State, and Interfacial Properties.
Palacios-Ortega J, García-Linares S, Åstrand M, Al Sazzad MA, Gavilanes JG, Martínez-del-Pozo Á, Slotte JP. Palacios-Ortega J, et al. Langmuir. 2016 Apr 12;32(14):3476-84. doi: 10.1021/acs.langmuir.6b00082. Epub 2016 Mar 29. Langmuir. 2016. PMID: 27003246 - 2NH and 3OH are crucial structural requirements in sphingomyelin for sticholysin II binding and pore formation in bilayer membranes.
Maula T, Isaksson YJ, García-Linares S, Niinivehmas S, Pentikäinen OT, Kurita M, Yamaguchi S, Yamamoto T, Katsumura S, Gavilanes JG, Martínez-del-Pozo A, Slotte JP. Maula T, et al. Biochim Biophys Acta. 2013 May;1828(5):1390-5. doi: 10.1016/j.bbamem.2013.01.018. Epub 2013 Jan 30. Biochim Biophys Acta. 2013. PMID: 23376330 - The Influence of Hydrogen Bonding on Sphingomyelin/Colipid Interactions in Bilayer Membranes.
Yasuda T, Al Sazzad MA, Jäntti NZ, Pentikäinen OT, Slotte JP. Yasuda T, et al. Biophys J. 2016 Jan 19;110(2):431-440. doi: 10.1016/j.bpj.2015.11.3515. Biophys J. 2016. PMID: 26789766 Free PMC article. - Biological functions of sphingomyelins.
Slotte JP. Slotte JP. Prog Lipid Res. 2013 Oct;52(4):424-37. doi: 10.1016/j.plipres.2013.05.001. Epub 2013 May 14. Prog Lipid Res. 2013. PMID: 23684760 Review. - The importance of hydrogen bonding in sphingomyelin's membrane interactions with co-lipids.
Slotte JP. Slotte JP. Biochim Biophys Acta. 2016 Feb;1858(2):304-10. doi: 10.1016/j.bbamem.2015.12.008. Epub 2015 Dec 4. Biochim Biophys Acta. 2016. PMID: 26656158 Review.
Cited by
- Haemolytic actinoporins interact with carbohydrates using their lipid-binding module.
Tanaka K, Caaveiro JMM, Morante K, Tsumoto K. Tanaka K, et al. Philos Trans R Soc Lond B Biol Sci. 2017 Aug 5;372(1726):20160216. doi: 10.1098/rstb.2016.0216. Philos Trans R Soc Lond B Biol Sci. 2017. PMID: 28630155 Free PMC article. - The Important Role of Membrane Fluidity on the Lytic Mechanism of the α-Pore-Forming Toxin Sticholysin I.
Pedrera L, Ros U, Fanani ML, Lanio ME, Epand RM, García-Sáez AJ, Álvarez C. Pedrera L, et al. Toxins (Basel). 2023 Jan 16;15(1):80. doi: 10.3390/toxins15010080. Toxins (Basel). 2023. PMID: 36668899 Free PMC article. - Actinoporins: From the Structure and Function to the Generation of Biotechnological and Therapeutic Tools.
Ramírez-Carreto S, Miranda-Zaragoza B, Rodríguez-Almazán C. Ramírez-Carreto S, et al. Biomolecules. 2020 Apr 2;10(4):539. doi: 10.3390/biom10040539. Biomolecules. 2020. PMID: 32252469 Free PMC article. Review. - Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging.
Margheritis E, Kappelhoff S, Cosentino K. Margheritis E, et al. Int J Mol Sci. 2023 Feb 25;24(5):4528. doi: 10.3390/ijms24054528. Int J Mol Sci. 2023. PMID: 36901959 Free PMC article. Review. - Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction.
Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Gavilanes JG, Martínez-Del-Pozo Á, Slotte JP. Palacios-Ortega J, et al. Biophys J. 2019 Jun 18;116(12):2253-2265. doi: 10.1016/j.bpj.2019.05.010. Epub 2019 May 16. Biophys J. 2019. PMID: 31146924 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous