Production of Sactipeptides in Escherichia coli: Probing the Substrate Promiscuity of Subtilosin A Biosynthesis - PubMed (original) (raw)
. 2016 Jun 17;11(6):1737-44.
doi: 10.1021/acschembio.6b00042. Epub 2016 Apr 25.
Affiliations
- PMID: 27019323
- DOI: 10.1021/acschembio.6b00042
Production of Sactipeptides in Escherichia coli: Probing the Substrate Promiscuity of Subtilosin A Biosynthesis
Paul M Himes et al. ACS Chem Biol. 2016.
Abstract
Sactipeptides are peptide-derived natural products that are processed by remarkable, radical-mediated cysteine sulfur to α-carbon coupling reactions. The resulting sactionine thioether linkages give rise to the unique defined structures and concomitant biological activities of sactipeptides. An E. coli heterologous expression system, based on the biosynthesis of one such sactipeptide, subtilosin A, is described and this expression system is exploited to probe the promiscuity of the subtilosin A sactionine bond-forming enzyme, AlbA. These efforts allowed the facile expression and isolation of a small library of mutant sactipeptides based on the subtilosin A precursor peptide, demonstrating broad substrate promiscuity where none was previously known. Importantly, we show that the positions of the sactionine linkages can be moved, giving rise to new, unnatural sactipeptide structures. E. coli heterologous expression also allowed incorporation of unnatural amino acids into sactipeptides by means of amber-suppression technology, potentially opening up new chemistry and new applications for unnatural sactipeptides.
Similar articles
- Sactipeptide Engineering by Probing the Substrate Tolerance of a Thioether-Bond-Forming Sactisynthase.
Ali A, Happel D, Habermann J, Schoenfeld K, Macarrón Palacios A, Bitsch S, Englert S, Schneider H, Avrutina O, Fabritz S, Kolmar H. Ali A, et al. Angew Chem Int Ed Engl. 2022 Nov 7;61(45):e202210883. doi: 10.1002/anie.202210883. Epub 2022 Oct 12. Angew Chem Int Ed Engl. 2022. PMID: 36049110 Free PMC article. - Reconstitution and Substrate Specificity of the Thioether-Forming Radical _S_-Adenosylmethionine Enzyme in Freyrasin Biosynthesis.
Precord TW, Mahanta N, Mitchell DA. Precord TW, et al. ACS Chem Biol. 2019 Sep 20;14(9):1981-1989. doi: 10.1021/acschembio.9b00457. Epub 2019 Sep 9. ACS Chem Biol. 2019. PMID: 31449382 Free PMC article. - Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides.
Grove TL, Himes PM, Hwang S, Yumerefendi H, Bonanno JB, Kuhlman B, Almo SC, Bowers AA. Grove TL, et al. J Am Chem Soc. 2017 Aug 30;139(34):11734-11744. doi: 10.1021/jacs.7b01283. Epub 2017 Aug 21. J Am Chem Soc. 2017. PMID: 28704043 Free PMC article. - Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.
Flühe L, Marahiel MA. Flühe L, et al. Curr Opin Chem Biol. 2013 Aug;17(4):605-12. doi: 10.1016/j.cbpa.2013.06.031. Epub 2013 Jul 24. Curr Opin Chem Biol. 2013. PMID: 23891473 Review. - Current Advancements in Sactipeptide Natural Products.
Chen Y, Wang J, Li G, Yang Y, Ding W. Chen Y, et al. Front Chem. 2021 May 20;9:595991. doi: 10.3389/fchem.2021.595991. eCollection 2021. Front Chem. 2021. PMID: 34095082 Free PMC article. Review.
Cited by
- Sactipeptide Engineering by Probing the Substrate Tolerance of a Thioether-Bond-Forming Sactisynthase.
Ali A, Happel D, Habermann J, Schoenfeld K, Macarrón Palacios A, Bitsch S, Englert S, Schneider H, Avrutina O, Fabritz S, Kolmar H. Ali A, et al. Angew Chem Int Ed Engl. 2022 Nov 7;61(45):e202210883. doi: 10.1002/anie.202210883. Epub 2022 Oct 12. Angew Chem Int Ed Engl. 2022. PMID: 36049110 Free PMC article. - Culture and genome-based analysis of four soil Clostridium isolates reveal their potential for antimicrobial production.
Pahalagedara ASNW, Jauregui R, Maclean P, Altermann E, Flint S, Palmer J, Brightwell G, Gupta TB. Pahalagedara ASNW, et al. BMC Genomics. 2021 Sep 22;22(1):686. doi: 10.1186/s12864-021-08005-2. BMC Genomics. 2021. PMID: 34548019 Free PMC article. - Leveraging Substrate Promiscuity of a Radical _S_-Adenosyl-L-methionine RiPP Maturase toward Intramolecular Peptide Cross-Linking Applications.
Eastman KAS, Kincannon WM, Bandarian V. Eastman KAS, et al. ACS Cent Sci. 2022 Aug 24;8(8):1209-1217. doi: 10.1021/acscentsci.2c00501. Epub 2022 Aug 1. ACS Cent Sci. 2022. PMID: 36032765 Free PMC article. - Ruminococcin C, a promising antibiotic produced by a human gut symbiont.
Chiumento S, Roblin C, Kieffer-Jaquinod S, Tachon S, Leprètre C, Basset C, Aditiyarini D, Olleik H, Nicoletti C, Bornet O, Iranzo O, Maresca M, Hardré R, Fons M, Giardina T, Devillard E, Guerlesquin F, Couté Y, Atta M, Perrier J, Lafond M, Duarte V. Chiumento S, et al. Sci Adv. 2019 Sep 25;5(9):eaaw9969. doi: 10.1126/sciadv.aaw9969. eCollection 2019 Sep. Sci Adv. 2019. PMID: 31579822 Free PMC article. - Assessing the Flexibility of the Prochlorosin 2.8 Scaffold for Bioengineering Applications.
Hegemann JD, Bobeica SC, Walker MC, Bothwell IR, van der Donk WA. Hegemann JD, et al. ACS Synth Biol. 2019 May 17;8(5):1204-1214. doi: 10.1021/acssynbio.9b00080. Epub 2019 May 8. ACS Synth Biol. 2019. PMID: 31042373 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous