Intermixing of dipalmitoylphosphatidylcholine with phospho- and sphingolipids bearing highly asymmetric hydrocarbon chains - PubMed (original) (raw)

Intermixing of dipalmitoylphosphatidylcholine with phospho- and sphingolipids bearing highly asymmetric hydrocarbon chains

M Gardam et al. Biochim Biophys Acta. 1989.

Abstract

We have used high-sensitivity differential scanning calorimetry to investigate the mixing of dipalmitoylphosphatidylcholine (DPPC) with N-lignoceroylgalactocerebroside, N-lignoceroylsulfogalactocerebroside and 1-lauroyl-2-lignoceroylphosphatidylcholine. These three lignoceroyl species, whose two hydrocarbon chains are quite discrepant in length, are completely miscible with DPPC in the liquid-crystalline state. Mixtures of all three lignoceroyl lipids with DPPC show phase separation in the gel state, which is observed over a limited range of compositions (from less than 10 mol% to just over 40 mol% sulfatide) in the case of N-lignoceroylsulfatide and over a wide range of compositions in the cases of N-lignoceroylcerebroside (less than 10 mol% to greater than 90 mol% cerebroside) and 1-lauroyl-2-lignoceroyl-PC (roughly 10 mol% to 90 mol% lauroyl/lignoceroyl PC). The extensive solid-solid phase separation observed in mixtures of DPPC and 1-lauroyl-2-lignoceroyl-PC, which show eutectic behavior, is somewhat unexpected given the similar transition temperatures of the two components but appears to reflect the ability of the lignoceroyl species to form an interdigitated gel phase. However, we find no evidence that the N-lignoceroylsphingolipids are markedly more prone to segregate laterally in PC-rich bilayers than are previously studied sphingolipid species with shorter N-acyl chains. We suggest on the basis of these results that the primary biological importance of the very long N-acyl chains found in many sphingolipids may lie in some function other than the promotion of lateral segregation of sphingolipid-enriched domains in biological membranes.

PubMed Disclaimer

Publication types

MeSH terms

Substances