Cancer metabolism: a therapeutic perspective - PubMed (original) (raw)
Review
Cancer metabolism: a therapeutic perspective
Ubaldo E Martinez-Outschoorn et al. Nat Rev Clin Oncol. 2017 Jan.
Erratum in
- Cancer metabolism: a therapeutic perspective.
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Martinez-Outschoorn UE, et al. Nat Rev Clin Oncol. 2017 Feb;14(2):113. doi: 10.1038/nrclinonc.2017.1. Epub 2017 Jan 17. Nat Rev Clin Oncol. 2017. PMID: 28094266 No abstract available.
Abstract
Awareness that the metabolic phenotype of cells within tumours is heterogeneous - and distinct from that of their normal counterparts - is growing. In general, tumour cells metabolize glucose, lactate, pyruvate, hydroxybutyrate, acetate, glutamine, and fatty acids at much higher rates than their nontumour equivalents; however, the metabolic ecology of tumours is complex because they contain multiple metabolic compartments, which are linked by the transfer of these catabolites. This metabolic variability and flexibility enables tumour cells to generate ATP as an energy source, while maintaining the reduction-oxidation (redox) balance and committing resources to biosynthesis - processes that are essential for cell survival, growth, and proliferation. Importantly, experimental evidence indicates that metabolic coupling between cell populations with different, complementary metabolic profiles can induce cancer progression. Thus, targeting the metabolic differences between tumour and normal cells holds promise as a novel anticancer strategy. In this Review, we discuss how cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression; in particular, we highlight potential metabolic vulnerabilities that might be targeted therapeutically.
Similar articles
- Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development.
Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U. Wilde L, et al. Semin Oncol. 2017 Jun;44(3):198-203. doi: 10.1053/j.seminoncol.2017.10.004. Epub 2017 Oct 10. Semin Oncol. 2017. PMID: 29248131 Free PMC article. Review. - Metabolic and genetic regulation of cardiac energy substrate preference.
Kodde IF, van der Stok J, Smolenski RT, de Jong JW. Kodde IF, et al. Comp Biochem Physiol A Mol Integr Physiol. 2007 Jan;146(1):26-39. doi: 10.1016/j.cbpa.2006.09.014. Epub 2006 Oct 3. Comp Biochem Physiol A Mol Integr Physiol. 2007. PMID: 17081788 Review. - Doxorubicin increases oxidative metabolism in HL-1 cardiomyocytes as shown by 13C metabolic flux analysis.
Strigun A, Wahrheit J, Niklas J, Heinzle E, Noor F. Strigun A, et al. Toxicol Sci. 2012 Feb;125(2):595-606. doi: 10.1093/toxsci/kfr298. Epub 2011 Nov 1. Toxicol Sci. 2012. PMID: 22048646 - Hopefully devoted to Q: targeting glutamine addiction in cancer.
Still ER, Yuneva MO. Still ER, et al. Br J Cancer. 2017 May 23;116(11):1375-1381. doi: 10.1038/bjc.2017.113. Epub 2017 Apr 25. Br J Cancer. 2017. PMID: 28441384 Free PMC article. Review. - Glutaminases regulate glutathione and oxidative stress in cancer.
Matés JM, Campos-Sandoval JA, de Los Santos-Jiménez J, Márquez J. Matés JM, et al. Arch Toxicol. 2020 Aug;94(8):2603-2623. doi: 10.1007/s00204-020-02838-8. Epub 2020 Jul 18. Arch Toxicol. 2020. PMID: 32681190 Review.
Cited by
- The roles of intratumour heterogeneity in the biology and treatment of pancreatic ductal adenocarcinoma.
Evan T, Wang VM, Behrens A. Evan T, et al. Oncogene. 2022 Oct;41(42):4686-4695. doi: 10.1038/s41388-022-02448-x. Epub 2022 Sep 10. Oncogene. 2022. PMID: 36088504 Free PMC article. Review. - Mechanoresponsive metabolism in cancer cell migration and metastasis.
Zanotelli MR, Zhang J, Reinhart-King CA. Zanotelli MR, et al. Cell Metab. 2021 Jul 6;33(7):1307-1321. doi: 10.1016/j.cmet.2021.04.002. Epub 2021 Apr 28. Cell Metab. 2021. PMID: 33915111 Free PMC article. Review. - Identification of a cholesterol metabolism-related prognostic signature for multiple myeloma.
Zhao N, Qu C, Yang Y, Li H, Li Y, Zhu H, Long Z. Zhao N, et al. Sci Rep. 2023 Nov 8;13(1):19395. doi: 10.1038/s41598-023-46426-z. Sci Rep. 2023. PMID: 37938654 Free PMC article. - Relationship between metabolic reprogramming and drug resistance in breast cancer.
Lv L, Yang S, Zhu Y, Zhai X, Li S, Tao X, Dong D. Lv L, et al. Front Oncol. 2022 Aug 18;12:942064. doi: 10.3389/fonc.2022.942064. eCollection 2022. Front Oncol. 2022. PMID: 36059650 Free PMC article. Review. - Pparγ1 Facilitates ErbB2-Mammary Adenocarcinoma in Mice.
Jiao X, Tian L, Zhang Z, Balcerek J, Kossenkov AV, Casimiro MC, Wang C, Liu Y, Ertel A, Soccio RE, Chen ER, Liu Q, Ashton AW, Tong W, Pestell RG. Jiao X, et al. Cancers (Basel). 2021 Apr 30;13(9):2171. doi: 10.3390/cancers13092171. Cancers (Basel). 2021. PMID: 33946495 Free PMC article.
References
- Nature. 2009 Oct 29;461(7268):1282-6 - PubMed
- Science. 2014 Mar 28;343(6178):1485-9 - PubMed
- Trends Pharmacol Sci. 2015 Feb;36(2):124-35 - PubMed
- Cell Metab. 2014 Dec 2;20(6):953-66 - PubMed
- Cancer Cell. 2015 Jan 12;27(1):57-71 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous