Huntington disease - PubMed (original) (raw)
Review
doi: 10.1038/nrdp.2015.5.
Ray Dorsey 2, James F Gusella 3, Michael R Hayden 4, Chris Kay 4, Blair R Leavitt 4, Martha Nance 5, Christopher A Ross 6, Rachael I Scahill 7, Ronald Wetzel 8, Edward J Wild 7, Sarah J Tabrizi 7
Affiliations
- PMID: 27188817
- DOI: 10.1038/nrdp.2015.5
Review
Huntington disease
Gillian P Bates et al. Nat Rev Dis Primers. 2015.
Abstract
Huntington disease is devastating to patients and their families - with autosomal dominant inheritance, onset typically in the prime of adult life, progressive course, and a combination of motor, cognitive and behavioural features. The disease is caused by an expanded CAG trinucleotide repeat (of variable length) in HTT, the gene that encodes the protein huntingtin. In mutation carriers, huntingtin is produced with abnormally long polyglutamine sequences that confer toxic gains of function and predispose the protein to fragmentation, resulting in neuronal dysfunction and death. In this Primer, we review the epidemiology of Huntington disease, noting that prevalence is higher than previously thought, geographically variable and increasing. We describe the relationship between CAG repeat length and clinical phenotype, as well as the concept of genetic modifiers of the disease. We discuss normal huntingtin protein function, evidence for differential toxicity of mutant huntingtin variants, theories of huntingtin aggregation and the many different mechanisms of Huntington disease pathogenesis. We describe the genetic and clinical diagnosis of the condition, its clinical assessment and the multidisciplinary management of symptoms, given the absence of effective disease-modifying therapies. We review past and present clinical trials and therapeutic strategies under investigation, including impending trials of targeted huntingtin-lowering drugs and the progress in development of biomarkers that will support the next generation of trials. For an illustrated summary of this Primer, visit: http://go.nature.com/hPMENh.
Similar articles
- Clinical Features of Huntington's Disease.
Ghosh R, Tabrizi SJ. Ghosh R, et al. Adv Exp Med Biol. 2018;1049:1-28. doi: 10.1007/978-3-319-71779-1_1. Adv Exp Med Biol. 2018. PMID: 29427096 Review. - Huntington's disease: from pathology and genetics to potential therapies.
Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, Rubinsztein DC. Imarisio S, et al. Biochem J. 2008 Jun 1;412(2):191-209. doi: 10.1042/BJ20071619. Biochem J. 2008. PMID: 18466116 Review. - Huntington disease: pathogenesis and treatment.
Dayalu P, Albin RL. Dayalu P, et al. Neurol Clin. 2015 Feb;33(1):101-14. doi: 10.1016/j.ncl.2014.09.003. Neurol Clin. 2015. PMID: 25432725 Review. - Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins.
Huang CC, Faber PW, Persichetti F, Mittal V, Vonsattel JP, MacDonald ME, Gusella JF. Huang CC, et al. Somat Cell Mol Genet. 1998 Jul;24(4):217-33. doi: 10.1023/b:scam.0000007124.19463.e5. Somat Cell Mol Genet. 1998. PMID: 10410676 - Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification.
Evers MM, Tran HD, Zalachoras I, Meijer OC, den Dunnen JT, van Ommen GJ, Aartsma-Rus A, van Roon-Mom WM. Evers MM, et al. Nucleic Acid Ther. 2014 Feb;24(1):4-12. doi: 10.1089/nat.2013.0452. Epub 2013 Dec 31. Nucleic Acid Ther. 2014. PMID: 24380395
Cited by
- Withaferin A Induces Heat Shock Response and Ameliorates Disease Progression in a Mouse Model of Huntington's Disease.
Joshi T, Kumar V, Kaznacheyeva EV, Jana NR. Joshi T, et al. Mol Neurobiol. 2021 Aug;58(8):3992-4006. doi: 10.1007/s12035-021-02397-8. Epub 2021 Apr 26. Mol Neurobiol. 2021. PMID: 33904021 - Impaired XK recycling for importing manganese underlies striatal vulnerability in Huntington's disease.
Chhetri G, Ke Y, Wang P, Usman M, Li Y, Sapp E, Wang J, Ghosh A, Islam MA, Wang X, Boudi A, DiFiglia M, Li X. Chhetri G, et al. J Cell Biol. 2022 Oct 3;221(10):e202112073. doi: 10.1083/jcb.202112073. Epub 2022 Sep 13. J Cell Biol. 2022. PMID: 36099524 Free PMC article. - Neuroprotection by ADAM10 inhibition requires TrkB signaling in the Huntington's disease hippocampus.
Scolz A, Vezzoli E, Villa M, Talpo F, Cazzola J, Raffin F, Cordiglieri C, Falqui A, Pepe G, Maglione V, Besusso D, Biella G, Zuccato C. Scolz A, et al. Cell Mol Life Sci. 2024 Aug 7;81(1):333. doi: 10.1007/s00018-024-05382-1. Cell Mol Life Sci. 2024. PMID: 39112663 Free PMC article. - Dissecting the role of glutamine in seeding peptide aggregation.
Barrera EE, Zonta F, Pantano S. Barrera EE, et al. Comput Struct Biotechnol J. 2021 Mar 13;19:1595-1602. doi: 10.1016/j.csbj.2021.02.014. eCollection 2021. Comput Struct Biotechnol J. 2021. PMID: 33868596 Free PMC article. - Mutant huntingtin messenger RNA forms neuronal nuclear clusters in rodent and human brains.
Ly S, Didiot MC, Ferguson CM, Coles AH, Miller R, Chase K, Echeverria D, Wang F, Sadri-Vakili G, Aronin N, Khvorova A. Ly S, et al. Brain Commun. 2022 Oct 13;4(6):fcac248. doi: 10.1093/braincomms/fcac248. eCollection 2022. Brain Commun. 2022. PMID: 36458209 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous