Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA - PubMed (original) (raw)
Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA
Sam Chen et al. J Control Release. 2016.
Abstract
Lipid nanoparticles (LNP) can provide a clinically effective method for delivering small interfering RNA (siRNA) to silence pathological genes in hepatocytes. The gene silencing potency of these LNP-siRNA systems has been shown to depend on a variety of factors including association with serum factors such as ApoE and the pKa of component ionizable lipids. Here we investigate the influence of LNP size, an important parameter affecting tissue penetration of LNP systems, on the pharmacokinetics, biodistribution, and hepatic gene silencing potency of LNP-siRNA systems following intravenous administration. For LNP systems stabilized by a polyethylene glycol (PEG)-lipid that can dissociate from the LNP following injection, it is shown that small (diameter≤30nm) systems are considerably less potent than their larger counterparts. This is attributed in part to the ability of other lipid components, particularly the ionizable amino-lipid, to dissociate from the LNP following dissociation of the PEG-lipid. Small LNP stabilized by PEG-lipids with slow dissociation rates exhibited much reduced amino-lipid dissociation rates, however such systems are relatively impotent due to the continued presence of the PEG coating. These results demonstrate the delicate balance between the in vivo potency of LNP-siRNA systems and the residence times of component lipids in the LNP particle itself and suggest new directions to optimize the in vivo gene silencing potency of small LNP-siRNA systems.
Keywords: Drug delivery; Lipid exchange; Lipid nanoparticles; Liposomes; Nanomedicine; siRNA.
Copyright © 2016. Published by Elsevier B.V.
Similar articles
- Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration.
Chen S, Tam YY, Lin PJ, Leung AK, Tam YK, Cullis PR. Chen S, et al. J Control Release. 2014 Dec 28;196:106-12. doi: 10.1016/j.jconrel.2014.09.025. Epub 2014 Oct 5. J Control Release. 2014. PMID: 25285610 - Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells.
Basha G, Novobrantseva TI, Rosin N, Tam YY, Hafez IM, Wong MK, Sugo T, Ruda VM, Qin J, Klebanov B, Ciufolini M, Akinc A, Tam YK, Hope MJ, Cullis PR. Basha G, et al. Mol Ther. 2011 Dec;19(12):2186-200. doi: 10.1038/mt.2011.190. Epub 2011 Oct 4. Mol Ther. 2011. PMID: 21971424 Free PMC article. - On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA.
Kulkarni JA, Darjuan MM, Mercer JE, Chen S, van der Meel R, Thewalt JL, Tam YYC, Cullis PR. Kulkarni JA, et al. ACS Nano. 2018 May 22;12(5):4787-4795. doi: 10.1021/acsnano.8b01516. Epub 2018 Apr 6. ACS Nano. 2018. PMID: 29614232 - Lipid Nanoparticle Systems for Enabling Gene Therapies.
Cullis PR, Hope MJ. Cullis PR, et al. Mol Ther. 2017 Jul 5;25(7):1467-1475. doi: 10.1016/j.ymthe.2017.03.013. Epub 2017 Apr 13. Mol Ther. 2017. PMID: 28412170 Free PMC article. Review. - Lipid nanoparticles for short interfering RNA delivery.
Leung AK, Tam YY, Cullis PR. Leung AK, et al. Adv Genet. 2014;88:71-110. doi: 10.1016/B978-0-12-800148-6.00004-3. Adv Genet. 2014. PMID: 25409604 Free PMC article. Review.
Cited by
- Payload distribution and capacity of mRNA lipid nanoparticles.
Li S, Hu Y, Li A, Lin J, Hsieh K, Schneiderman Z, Zhang P, Zhu Y, Qiu C, Kokkoli E, Wang TH, Mao HQ. Li S, et al. Nat Commun. 2022 Sep 23;13(1):5561. doi: 10.1038/s41467-022-33157-4. Nat Commun. 2022. PMID: 36151112 Free PMC article. - Analysing the In-Use Stability of mRNA-LNP COVID-19 Vaccines Comirnaty™ (Pfizer) and Spikevax™ (Moderna): A Comparative Study of the Particulate.
Hermosilla J, Alonso-García A, Salmerón-García A, Cabeza-Barrera J, Medina-Castillo AL, Pérez-Robles R, Navas N. Hermosilla J, et al. Vaccines (Basel). 2023 Oct 25;11(11):1635. doi: 10.3390/vaccines11111635. Vaccines (Basel). 2023. PMID: 38005967 Free PMC article. - Development of mRNA Lipid Nanoparticles: Targeting and Therapeutic Aspects.
Liu Y, Huang Y, He G, Guo C, Dong J, Wu L. Liu Y, et al. Int J Mol Sci. 2024 Sep 22;25(18):10166. doi: 10.3390/ijms251810166. Int J Mol Sci. 2024. PMID: 39337651 Free PMC article. Review. - Delivery of oligonucleotide-based therapeutics: challenges and opportunities.
Hammond SM, Aartsma-Rus A, Alves S, Borgos SE, Buijsen RAM, Collin RWJ, Covello G, Denti MA, Desviat LR, Echevarría L, Foged C, Gaina G, Garanto A, Goyenvalle AT, Guzowska M, Holodnuka I, Jones DR, Krause S, Lehto T, Montolio M, Van Roon-Mom W, Arechavala-Gomeza V. Hammond SM, et al. EMBO Mol Med. 2021 Apr 9;13(4):e13243. doi: 10.15252/emmm.202013243. Epub 2021 Apr 6. EMBO Mol Med. 2021. PMID: 33821570 Free PMC article. Review. - Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm.
Wang W, Feng S, Ye Z, Gao H, Lin J, Ouyang D. Wang W, et al. Acta Pharm Sin B. 2022 Jun;12(6):2950-2962. doi: 10.1016/j.apsb.2021.11.021. Epub 2021 Dec 2. Acta Pharm Sin B. 2022. PMID: 35755271 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous