What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated - PubMed (original) (raw)

Review

What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated

Dharshan Kumaran et al. Trends Cogn Sci. 2016 Jul.

Abstract

We update complementary learning systems (CLS) theory, which holds that intelligent agents must possess two learning systems, instantiated in mammalians in neocortex and hippocampus. The first gradually acquires structured knowledge representations while the second quickly learns the specifics of individual experiences. We broaden the role of replay of hippocampal memories in the theory, noting that replay allows goal-dependent weighting of experience statistics. We also address recent challenges to the theory and extend it by showing that recurrent activation of hippocampal traces can support some forms of generalization and that neocortical learning can be rapid for information that is consistent with known structure. Finally, we note the relevance of the theory to the design of artificial intelligent agents, highlighting connections between neuroscience and machine learning.

Keywords: artificial intelligence; hippocampus; learning; memory.

Copyright © 2016 Elsevier Ltd. All rights reserved.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources