How to Grow a Lung: Applying Principles of Developmental Biology to Generate Lung Lineages from Human Pluripotent Stem Cells - PubMed (original) (raw)

Review

How to Grow a Lung: Applying Principles of Developmental Biology to Generate Lung Lineages from Human Pluripotent Stem Cells

Briana R Dye et al. Curr Pathobiol Rep. 2016.

Abstract

The number and severity of diseases affecting human lung development and adult respiratory function has stimulated great interest in new in vitro models to study the human lung. This review summarizes the most recent breakthroughs deriving lung lineages in a dish by directing the differentiation of human pluripotent stem cells. A variety of culturing platforms have been developed, including two-dimensional and three-dimensional (organoid) culture platforms, to derive specific cell types and structures of the lung. These stem cell-derived lung models will further our understanding of human lung development, disease, and regeneration.

Keywords: Airway; Alveoli; Directed differentiation; Human pluripotent stem cell; Lung development; Organoid.

PubMed Disclaimer

Figures

Fig. 1

Fig. 1

A diagram summarizing the lung cell types in and surrounding the airways and alveoli. Upper airways are surrounded by cartilage (brown) and smooth muscle (pink). The upper airway epithelium is lined with basal cells (orange) with ciliated (pink), goblet (yellow), club (green), and neuroendocrine (light purple) cells adjacent to the basal cells facing toward the lumen of the airway. The lower airways possess less basal cells and consist of mostly ciliated and club cells with surrounding tissues consisting of smooth muscle, myofibroblasts (purple), and patches of cartilage. Vessels (red line) and neurons (blue line) line both the upper and lower airways. The alveolar sacs consist of elongated AECI (light blue) and cuboidal AECII cells (dark blue) that are lined with thin vessels in order for gas exchange to occur with few fibroblasts scattered outside the alveolar sac. Note that only the most abundant lung cell types are depicted (Color figure online)

Fig. 2

Fig. 2

The majority of protocols to derive lung cell types from hPSCs have taken a directed differentiation approach. hPSCs are first treated with growth factors, including ActivinA, to derive endoderm, which is further treated to become anterior foregut endoderm. Anterior foregut endoderm cells are marked by Nkx2.1, FoxA2, and Sox2 transcription factors. Different groups have used various methods to derive lung cell types after this stage. a Huang et al. grew foregut cultures for 15 days, after which cells were broken up and remaining large clumps were re-plated. On day 25, cells were treated with a DCI cocktail, which has been shown to induce alveolar specific cell-type gene expression in vitro [34, 94]. After 48 days in monolayer culture, the majority of cells expressed the AECII marker, SFTPB. A low number of cells also expressed the proximal ciliated cell marker FOXJ1, and some cells expressed markers for mature AECI (HOPX, AQP5) cells and exhibited elongated nuclei. b Dye et al. treated foregut cultures with FGF4 and Wnt to induce three-dimensional foregut spheroids, which were cultured in a matrigel droplet. These lung organoids persisted in culture for over 100 days and contained an organized epithelium containing cells positive for proximal airway markers FOXJ1/ACTUB (ciliated cells), p63 (basal stem cells), SCBGA1A1 (club cells), and surrounding mesenchymal tissue positive for smooth muscle (SMA) and vimentin (VIM). Additionally, organoids contained some cells that stained positive for AECI and AECII cell makers, but organized alveolar structures were not observed. c Wong et al. used multiple growth factor cocktails over the course of 35 days to induce lung progenitor cells in a monolayer culture. After roughly 5 weeks in culture, cells were moved to an air–liquid interface environment, which resulted in maturation of lung cells. The majority of cells expressed mature proximal cell markers for ciliated cells (FOXJ1) or goblet cells (MUC5AC), and cells exhibited distinct polarization, with the basal side of cells facing the media and the apical side of cells facing the air, similar to the in vivo polarization of lung cells with apical surfaces facing the airway lumen

References

    1. Mercer RR, Russell ML, Roggli VL, Crapo JD. Cell number and distribution in human and rat airways. Am J Respir Cell Mol Biol. 1994;10:613–624. doi: 10.1165/ajrcmb.10.6.8003339. - DOI - PubMed
    1. Wolff RK. Effects of airborne pollutants on mucociliary clearance. Environ Health Perspect. 1986;66:223–237. doi: 10.1289/ehp.8666223. - DOI - PMC - PubMed
    1. Schum M, Yeh HC. Theoretical evaluation of aerosol deposition in anatomical models of mammalian lung airways. Bull Math Biol. 1980;42:1–15. doi: 10.1007/BF02462363. - DOI - PubMed
    1. Rogers DF. Airway goblet cells: responsive and adaptable front-line defenders. Eur Respir J. 1994;7:1690–1706. doi: 10.1183/09031936.94.07091678. - DOI - PubMed
    1. Rock JR, Onaitis MW, Rawlins EL, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci. 2009;106:12771–12775. doi: 10.1073/pnas.0906850106. - DOI - PMC - PubMed

Publication types

LinkOut - more resources