Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly - PubMed (original) (raw)
Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly
D E Birk et al. Proc Natl Acad Sci U S A. 1989 Jun.
Abstract
The assembly of discontinuous fibril segments and bundles was studied in 14-day chicken embryo tendons by using serial sections, transmission electron microscopy, and computer-assisted image reconstruction. Fibril segments were first found in extracytoplasmic channels, the sites of their polymerization; they also were found within fibril bundles. Single fibril segments were followed over their entire length in consecutive sections, and their lengths ranged from 7 to 15 microns. Structural differences in the ends of the fibril segments were identified, suggesting that the amino/carboxyl polarity of the fibril segment is reflected in its architecture. Our data indicate that fibril segments are precursors in collagen fibril formation, and we suggest that postdepositional fusion of fibril segments may be an important process in tendon development and growth.
Similar articles
- Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
Birk DE, Zycband EI, Woodruff S, Winkelmann DA, Trelstad RL. Birk DE, et al. Dev Dyn. 1997 Mar;208(3):291-8. doi: 10.1002/(SICI)1097-0177(199703)208:3<291::AID-AJA1>3.0.CO;2-D. Dev Dyn. 1997. PMID: 9056634 - Assembly of the tendon extracellular matrix during development.
Birk DE, Zycband E. Birk DE, et al. J Anat. 1994 Jun;184 ( Pt 3)(Pt 3):457-63. J Anat. 1994. PMID: 7928635 Free PMC article. Review. - Collagen fibril bundles: a branching assembly unit in tendon morphogenesis.
Birk DE, Southern JF, Zycband EI, Fallon JT, Trelstad RL. Birk DE, et al. Development. 1989 Nov;107(3):437-43. doi: 10.1242/dev.107.3.437. Development. 1989. PMID: 2612371 - Collagen fibril formation.
Kadler KE, Holmes DF, Trotter JA, Chapman JA. Kadler KE, et al. Biochem J. 1996 May 15;316 ( Pt 1)(Pt 1):1-11. doi: 10.1042/bj3160001. Biochem J. 1996. PMID: 8645190 Free PMC article. Review.
Cited by
- Matrix nanotopography as a regulator of cell function.
Kim DH, Provenzano PP, Smith CL, Levchenko A. Kim DH, et al. J Cell Biol. 2012 Apr 30;197(3):351-60. doi: 10.1083/jcb.201108062. J Cell Biol. 2012. PMID: 22547406 Free PMC article. Review. - Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon.
Wenstrup RJ, Smith SM, Florer JB, Zhang G, Beason DP, Seegmiller RE, Soslowsky LJ, Birk DE. Wenstrup RJ, et al. J Biol Chem. 2011 Jun 10;286(23):20455-65. doi: 10.1074/jbc.M111.223693. Epub 2011 Apr 5. J Biol Chem. 2011. PMID: 21467034 Free PMC article. - Collagen XI regulates the acquisition of collagen fibril structure, organization and functional properties in tendon.
Sun M, Luo EY, Adams SM, Adams T, Ye Y, Shetye SS, Soslowsky LJ, Birk DE. Sun M, et al. Matrix Biol. 2020 Dec;94:77-94. doi: 10.1016/j.matbio.2020.09.001. Epub 2020 Sep 17. Matrix Biol. 2020. PMID: 32950601 Free PMC article. - Differential expression of type XII collagen in developing chicken metatarsal tendons.
Zhang G, Young BB, Birk DE. Zhang G, et al. J Anat. 2003 May;202(5):411-20. doi: 10.1046/j.1469-7580.2003.00174.x. J Anat. 2003. PMID: 12739618 Free PMC article. - Type-I collagen fibrils: From growth morphology to local order.
Charvolin J, Sadoc JF. Charvolin J, et al. Eur Phys J E Soft Matter. 2019 Apr 18;42(4):49. doi: 10.1140/epje/i2019-11812-1. Eur Phys J E Soft Matter. 2019. PMID: 31011856
References
- Biopolymers. 1977 Sep;16(9):1895-906 - PubMed
- Biochem Biophys Res Commun. 1979 Apr 27;87(4):993-9 - PubMed
- Dev Biol. 1979 Aug;71(2):228-42 - PubMed
- Nature. 1981 Mar 19;290(5803):249-51 - PubMed
- Cell. 1982 Feb;28(2):197-8 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources