Organization of the native ribosome-translocon complex at the mammalian endoplasmic reticulum membrane - PubMed (original) (raw)
Review
. 2016 Oct;1860(10):2122-9.
doi: 10.1016/j.bbagen.2016.06.024. Epub 2016 Jun 29.
Affiliations
- PMID: 27373685
- DOI: 10.1016/j.bbagen.2016.06.024
Review
Organization of the native ribosome-translocon complex at the mammalian endoplasmic reticulum membrane
Stefan Pfeffer et al. Biochim Biophys Acta. 2016 Oct.
Abstract
Background: In eukaryotic cells, many proteins have to be transported across or inserted into the endoplasmic reticulum membrane during their biogenesis on the ribosome. This process is facilitated by the protein translocon, a highly dynamic multi-subunit membrane protein complex.
Scope of review: The aim of this review is to summarize the current structural knowledge about protein translocon components in mammals.
Major conclusions: Various structural biology approaches have been used in synergy to characterize the translocon in recent years. X-ray crystallography and cryoelectron microscopy single particle analysis have yielded highly detailed insights into the structure and functional mechanism of the protein-conducting channel Sec61, which constitutes the functional core of the translocon. Cryoelectron tomography and subtomogram analysis have advanced our understanding of the overall structure, molecular organization and compositional heterogeneity of the translocon in a native membrane environment. Tomography densities at subnanometer resolution revealed an intricate network of interactions between the ribosome, Sec61 and accessory translocon components that assist in protein transport, membrane insertion and maturation.
General significance: The protein translocon is a gateway for approximately one third of all synthesized proteins and numerous human diseases are associated with malfunctioning of its components. Thus, detailed insights into the structure and molecular organization of the translocon will not only advance our understanding of membrane protein biogenesis in general, but they can potentially pave the way for novel therapeutic approaches against human diseases.
Keywords: Endoplasmic reticulum; Membrane protein biogenesis; Protein translocon; Ribosome; Structural biology.
Copyright © 2016 Elsevier B.V. All rights reserved.
Similar articles
- Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum.
Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O, Mandon EC, Becker T, Förster F, Beckmann R. Braunger K, et al. Science. 2018 Apr 13;360(6385):215-219. doi: 10.1126/science.aar7899. Epub 2018 Mar 8. Science. 2018. PMID: 29519914 Free PMC article. - An ER translocon for multi-pass membrane protein biogenesis.
McGilvray PT, Anghel SA, Sundaram A, Zhong F, Trnka MJ, Fuller JR, Hu H, Burlingame AL, Keenan RJ. McGilvray PT, et al. Elife. 2020 Aug 21;9:e56889. doi: 10.7554/eLife.56889. Elife. 2020. PMID: 32820719 Free PMC article. - Functions and Mechanisms of the Human Ribosome-Translocon Complex.
Lang S, Nguyen D, Pfeffer S, Förster F, Helms V, Zimmermann R. Lang S, et al. Subcell Biochem. 2019;93:83-141. doi: 10.1007/978-3-030-28151-9_4. Subcell Biochem. 2019. PMID: 31939150 Review. - A clearer picture of the ER translocon complex.
Gemmer M, Förster F. Gemmer M, et al. J Cell Sci. 2020 Feb 4;133(3):jcs231340. doi: 10.1242/jcs.231340. J Cell Sci. 2020. PMID: 32019826 Review. - Structural analysis of the dynamic ribosome-translocon complex.
Lewis AJO, Zhong F, Keenan RJ, Hegde RS. Lewis AJO, et al. Elife. 2024 Jun 18;13:RP95814. doi: 10.7554/eLife.95814. Elife. 2024. PMID: 38896445 Free PMC article.
Cited by
- Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum.
Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O, Mandon EC, Becker T, Förster F, Beckmann R. Braunger K, et al. Science. 2018 Apr 13;360(6385):215-219. doi: 10.1126/science.aar7899. Epub 2018 Mar 8. Science. 2018. PMID: 29519914 Free PMC article. - The ongoing saga of the mechanism(s) of MHC class I-restricted cross-presentation.
Grotzke JE, Sengupta D, Lu Q, Cresswell P. Grotzke JE, et al. Curr Opin Immunol. 2017 Jun;46:89-96. doi: 10.1016/j.coi.2017.03.015. Epub 2017 May 18. Curr Opin Immunol. 2017. PMID: 28528219 Free PMC article. Review. - Divergent folding-mediated epistasis among unstable membrane protein variants.
Chamness LM, Kuntz CP, McKee AG, Penn WD, Hemmerich CM, Rusch DB, Woods H, Dyotima, Meiler J, Schlebach JP. Chamness LM, et al. Elife. 2024 Jul 30;12:RP92406. doi: 10.7554/eLife.92406. Elife. 2024. PMID: 39078397 Free PMC article. - Iminosugars: A host-targeted approach to combat Flaviviridae infections.
Evans DeWald L, Starr C, Butters T, Treston A, Warfield KL. Evans DeWald L, et al. Antiviral Res. 2020 Dec;184:104881. doi: 10.1016/j.antiviral.2020.104881. Epub 2020 Aug 5. Antiviral Res. 2020. PMID: 32768411 Free PMC article. Review. - Small Non-Coding RNAs Derived From Eukaryotic Ribosomal RNA.
Lambert M, Benmoussa A, Provost P. Lambert M, et al. Noncoding RNA. 2019 Feb 4;5(1):16. doi: 10.3390/ncrna5010016. Noncoding RNA. 2019. PMID: 30720712 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials