Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation - PubMed (original) (raw)
. 2016 Aug 26;55(36):10630-3.
doi: 10.1002/anie.201603882. Epub 2016 Jul 28.
Affiliations
- PMID: 27467699
- DOI: 10.1002/anie.201603882
Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation
Tristan Wagner et al. Angew Chem Int Ed Engl. 2016.
Abstract
All methanogenic and methanotrophic archaea known to date contain methyl-coenzyme M reductase (MCR) that catalyzes the reversible reduction of methyl-coenzyme M to methane. This enzyme contains the nickel porphinoid F430 as a prosthetic group and, highly conserved, a thioglycine and four methylated amino acid residues near the active site. We describe herein the presence of a novel post-translationally modified amino acid, didehydroaspartate, adjacent to the thioglycine as revealed by mass spectrometry and high-resolution X-ray crystallography. Upon chemical reduction, the didehydroaspartate residue was converted into aspartate. Didehydroaspartate was found in MCR I and II from Methanothermobacter marburgensis and in MCR of phylogenetically distantly related Methanosarcina barkeri but not in MCR I and II of Methanothermobacter wolfeii, which indicates that didehydroaspartate is dispensable but might have a role in fine-tuning the active site to increase the catalytic efficiency.
Keywords: didehydroaspartate; enzyme catalysis; methyl-coenzyme M reductase; post-translational modification.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
- Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation.
Grabarse W, Mahlert F, Shima S, Thauer RK, Ermler U. Grabarse W, et al. J Mol Biol. 2000 Oct 20;303(2):329-44. doi: 10.1006/jmbi.2000.4136. J Mol Biol. 2000. PMID: 11023796 - On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.
Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S, Thauer RK, Lamzin V, Ermler U. Grabarse W, et al. J Mol Biol. 2001 May 25;309(1):315-30. doi: 10.1006/jmbi.2001.4647. J Mol Biol. 2001. PMID: 11491299 - Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea.
Kahnt J, Buchenau B, Mahlert F, Krüger M, Shima S, Thauer RK. Kahnt J, et al. FEBS J. 2007 Sep;274(18):4913-21. doi: 10.1111/j.1742-4658.2007.06016.x. Epub 2007 Aug 24. FEBS J. 2007. PMID: 17725644 - Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster.
Hedderich R, Hamann N, Bennati M. Hedderich R, et al. Biol Chem. 2005 Oct;386(10):961-70. doi: 10.1515/BC.2005.112. Biol Chem. 2005. PMID: 16218868 Review. - Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes.
Thauer RK. Thauer RK. Biochemistry. 2019 Dec 31;58(52):5198-5220. doi: 10.1021/acs.biochem.9b00164. Epub 2019 Apr 5. Biochemistry. 2019. PMID: 30951290 Free PMC article. Review.
Cited by
- Metaproteomics analysis of the functional insights into microbial communities of combined hydrogen and methane production by anaerobic fermentation from reed straw.
Jia X, Xi BD, Li MX, Yang Y, Wang Y. Jia X, et al. PLoS One. 2017 Aug 17;12(8):e0183158. doi: 10.1371/journal.pone.0183158. eCollection 2017. PLoS One. 2017. PMID: 28817657 Free PMC article. - Post-Translational Modifications of Protein Backbones: Unique Functions, Mechanisms, and Challenges.
Müller MM. Müller MM. Biochemistry. 2018 Jan 16;57(2):177-185. doi: 10.1021/acs.biochem.7b00861. Epub 2017 Nov 3. Biochemistry. 2018. PMID: 29064683 Free PMC article. Review. - XFEL serial crystallography reveals the room temperature structure of methyl-coenzyme M reductase.
Ohmer CJ, Dasgupta M, Patwardhan A, Bogacz I, Kaminsky C, Doyle MD, Chen PY, Keable SM, Makita H, Simon PS, Massad R, Fransson T, Chatterjee R, Bhowmick A, Paley DW, Moriarty NW, Brewster AS, Gee LB, Alonso-Mori R, Moss F, Fuller FD, Batyuk A, Sauter NK, Bergmann U, Drennan CL, Yachandra VK, Yano J, Kern JF, Ragsdale SW. Ohmer CJ, et al. J Inorg Biochem. 2022 May;230:111768. doi: 10.1016/j.jinorgbio.2022.111768. Epub 2022 Feb 17. J Inorg Biochem. 2022. PMID: 35202981 Free PMC article. - Structural Insights into the Methane-Generating Enzyme from a Methoxydotrophic Methanogen Reveal a Restrained Gallery of Post-Translational Modifications.
Kurth JM, Müller MC, Welte CU, Wagner T. Kurth JM, et al. Microorganisms. 2021 Apr 14;9(4):837. doi: 10.3390/microorganisms9040837. Microorganisms. 2021. PMID: 33919946 Free PMC article. - Functional interactions between posttranslationally modified amino acids of methyl-coenzyme M reductase in Methanosarcina acetivorans.
Nayak DD, Liu A, Agrawal N, Rodriguez-Carerro R, Dong SH, Mitchell DA, Nair SK, Metcalf WW. Nayak DD, et al. PLoS Biol. 2020 Feb 24;18(2):e3000507. doi: 10.1371/journal.pbio.3000507. eCollection 2020 Feb. PLoS Biol. 2020. PMID: 32092071 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources