First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus) - PubMed (original) (raw)

. 2017 Jan;216(1):40.e1-40.e11.

doi: 10.1016/j.ajog.2016.07.041. Epub 2016 Aug 5.

Affiliations

First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus)

Nadia Bellofiore et al. Am J Obstet Gynecol. 2017 Jan.

Abstract

Background: Advances in research relating to menstruation and associated disorders (eg, endometriosis and premenstrual syndrome) have been hindered by the lack of an appropriate animal model. Menstruation, the cyclical shedding of the decidualized endometrium in the absence of pregnancy, is believed to be limited to 78 higher-order primates (human beings and Old World monkeys), 4 species of bat, and the elephant shrew. This represents only 1.5% of the known 5502 mammalian species and <0.09% of these are nonprimates. Thus, many aspects of menstruation remain poorly understood, limiting the development of effective treatments for women with menstrual disorders. Menstruation occurs as a consequence of progesterone priming of the endometrial stroma and a spontaneous decidual reaction. At the end of each infertile cycle as progesterone levels decline the uterus is unable to maintain this terminally differentiated stroma and the superficial endometrium is shed. True menstruation has never been reported in rodents.

Objective: Here we describe the first observation of menstruation in a rodent, the spiny mouse (Acomys cahirinus).

Study design: Virgin female spiny mice (n = 14) aged 12-16 weeks were sampled through daily vaginal lavage for 2 complete reproductive cycles. Stage-specific collection of reproductive tissue and plasma was used for histology, prolactin immunohistochemistry, and enzyme-linked immunosorbent assay of progesterone (n = 4-5/stage of the menstrual cycle). Normally distributed data are reported as the mean ± SE and significant differences calculated using a 1-way analysis of variance. Nonnormal data are displayed as the median values of replicates (with interquartile range) and significant differences calculated using Kruskal-Wallis test.

Results: Mean menstrual cycle length was 8.7 ± 0.4 days with red blood cells observed in the lavages over 3.0 ± 0.2 days. Cyclic endometrial shedding and blood in the vaginal canal concluding with each infertile cycle was confirmed in all virgin females. The endometrium was thickest during the luteal phase at 322.6 μm (254.8, 512.2), when plasma progesterone peaked at 102.1 ng/mL (70.1, 198.6) and the optical density for prolactin immunoreactivity was strongest (0.071 ± 0.01 arbitrary units).

Conclusion: The spiny mouse undergoes spontaneous decidualization, demonstrating for the first time menstruation in a rodent. The spiny mouse provides a readily accessible nonprimate model to study the mechanisms of menstrual shedding and repair, and may therefore be useful in furthering studies of human menstrual and pregnancy-associated disorders.

Keywords: endometrium; menstruation; progesterone; spontaneous decidualization.

Copyright © 2016 Elsevier Inc. All rights reserved.

PubMed Disclaimer

Comment in

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources