Allelic reprogramming of the histone modification H3K4me3 in early mammalian development - PubMed (original) (raw)
. 2016 Sep 22;537(7621):553-557.
doi: 10.1038/nature19361. Epub 2016 Sep 14.
Hui Zheng 1, Bo Huang 1 2, Wenzhi Li 3, Yunlong Xiang 1, Xu Peng 4, Jia Ming 3, Xiaotong Wu 5, Yu Zhang 1, Qianhua Xu 1, Wenqiang Liu 6, Xiaochen Kou 6, Yanhong Zhao 6, Wenteng He 6, Chong Li 6, Bo Chen 3, Yuanyuan Li 1, Qiujun Wang 1, Jing Ma 1, Qiangzong Yin 1, Kehkooi Kee 3, Anming Meng 5, Shaorong Gao 6, Feng Xu 4 7, Jie Na 3, Wei Xie 1
Affiliations
- PMID: 27626382
- DOI: 10.1038/nature19361
Allelic reprogramming of the histone modification H3K4me3 in early mammalian development
Bingjie Zhang et al. Nature. 2016.
Abstract
Histone modifications are fundamental epigenetic regulators that control many crucial cellular processes. However, whether these marks can be passed on from mammalian gametes to the next generation is a long-standing question that remains unanswered. Here, by developing a highly sensitive approach, STAR ChIP-seq, we provide a panoramic view of the landscape of H3K4me3, a histone hallmark for transcription initiation, from developing gametes to post-implantation embryos. We find that upon fertilization, extensive reprogramming occurs on the paternal genome, as H3K4me3 peaks are depleted in zygotes but are readily observed after major zygotic genome activation at the late two-cell stage. On the maternal genome, we unexpectedly find a non-canonical form of H3K4me3 (ncH3K4me3) in full-grown and mature oocytes, which exists as broad peaks at promoters and a large number of distal loci. Such broad H3K4me3 peaks are in contrast to the typical sharp H3K4me3 peaks restricted to CpG-rich regions of promoters. Notably, ncH3K4me3 in oocytes overlaps almost exclusively with partially methylated DNA domains. It is then inherited in pre-implantation embryos, before being erased in the late two-cell embryos, when canonical H3K4me3 starts to be established. The removal of ncH3K4me3 requires zygotic transcription but is independent of DNA replication-mediated passive dilution. Finally, downregulation of H3K4me3 in full-grown oocytes by overexpression of the H3K4me3 demethylase KDM5B is associated with defects in genome silencing. Taken together, these data unveil inheritance and highly dynamic reprogramming of the epigenome in early mammalian development.
Comment in
- Developmental biology: Panoramic views of the early epigenome.
Vaquerizas JM, Torres-Padilla ME. Vaquerizas JM, et al. Nature. 2016 Sep 22;537(7621):494-496. doi: 10.1038/nature19468. Epub 2016 Sep 14. Nature. 2016. PMID: 27626372 No abstract available.
Similar articles
- Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition.
Dahl JA, Jung I, Aanes H, Greggains GD, Manaf A, Lerdrup M, Li G, Kuan S, Li B, Lee AY, Preissl S, Jermstad I, Haugen MH, Suganthan R, Bjørås M, Hansen K, Dalen KT, Fedorcsak P, Ren B, Klungland A. Dahl JA, et al. Nature. 2016 Sep 22;537(7621):548-552. doi: 10.1038/nature19360. Epub 2016 Sep 14. Nature. 2016. PMID: 27626377 Free PMC article. - Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.
Liu X, Wang C, Liu W, Li J, Li C, Kou X, Chen J, Zhao Y, Gao H, Wang H, Zhang Y, Gao Y, Gao S. Liu X, et al. Nature. 2016 Sep 22;537(7621):558-562. doi: 10.1038/nature19362. Epub 2016 Sep 14. Nature. 2016. PMID: 27626379 - Chromatin analysis in human early development reveals epigenetic transition during ZGA.
Wu J, Xu J, Liu B, Yao G, Wang P, Lin Z, Huang B, Wang X, Li T, Shi S, Zhang N, Duan F, Ming J, Zhang X, Niu W, Song W, Jin H, Guo Y, Dai S, Hu L, Fang L, Wang Q, Li Y, Li W, Na J, Xie W, Sun Y. Wu J, et al. Nature. 2018 May;557(7704):256-260. doi: 10.1038/s41586-018-0080-8. Epub 2018 May 2. Nature. 2018. PMID: 29720659 - Germline-derived DNA methylation and early embryo epigenetic reprogramming: The selected survival of imprints.
Monk D. Monk D. Int J Biochem Cell Biol. 2015 Oct;67:128-38. doi: 10.1016/j.biocel.2015.04.014. Epub 2015 May 9. Int J Biochem Cell Biol. 2015. PMID: 25966912 Review. - Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation.
Hughes AL, Kelley JR, Klose RJ. Hughes AL, et al. Biochim Biophys Acta Gene Regul Mech. 2020 Aug;1863(8):194567. doi: 10.1016/j.bbagrm.2020.194567. Epub 2020 Apr 29. Biochim Biophys Acta Gene Regul Mech. 2020. PMID: 32360393 Free PMC article. Review.
Cited by
- P300 regulates histone crotonylation and preimplantation embryo development.
Gao D, Li C, Liu SY, Xu TT, Lin XT, Tan YP, Gao FM, Yi LT, Zhang JV, Ma JY, Meng TG, Yeung WSB, Liu K, Ou XH, Su RB, Sun QY. Gao D, et al. Nat Commun. 2024 Jul 30;15(1):6418. doi: 10.1038/s41467-024-50731-0. Nat Commun. 2024. PMID: 39080296 Free PMC article. - Nucleosomes in mammalian sperm: conveying paternal epigenetic inheritance or subject to reprogramming between generations?
Gaspa-Toneu L, Peters AH. Gaspa-Toneu L, et al. Curr Opin Genet Dev. 2023 Apr;79:102034. doi: 10.1016/j.gde.2023.102034. Epub 2023 Mar 7. Curr Opin Genet Dev. 2023. PMID: 36893482 Free PMC article. Review. - Long non-coding RNAs potentially function synergistically in the cellular reprogramming of SCNT embryos.
Wu F, Liu Y, Wu Q, Li D, Zhang L, Wu X, Wang R, Zhang D, Gao S, Li W. Wu F, et al. BMC Genomics. 2018 Aug 23;19(1):631. doi: 10.1186/s12864-018-5021-2. BMC Genomics. 2018. PMID: 30139326 Free PMC article. - The chromatin remodeler Snf2h is essential for oocyte meiotic cell cycle progression.
Zhang C, Chen Z, Yin Q, Fu X, Li Y, Stopka T, Skoultchi AI, Zhang Y. Zhang C, et al. Genes Dev. 2020 Feb 1;34(3-4):166-178. doi: 10.1101/gad.331157.119. Epub 2020 Jan 9. Genes Dev. 2020. PMID: 31919188 Free PMC article. - Profiling chromatin regulatory landscape: insights into the development of ChIP-seq and ATAC-seq.
Ma S, Zhang Y. Ma S, et al. Mol Biomed. 2020;1(1):9. doi: 10.1186/s43556-020-00009-w. Epub 2020 Oct 10. Mol Biomed. 2020. PMID: 34765994 Free PMC article. Review.
References
- J Cell Sci. 2010 Dec 15;123(Pt 24):4292-300 - PubMed
- Int J Dev Biol. 2012;56(10-12):867-75 - PubMed
- Hum Reprod. 2002 Aug;17(8):2152-9 - PubMed
- Cell. 2013 May 9;153(4):759-72 - PubMed
- Nature. 2012 Aug 2;488(7409):116-20 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials