The Different Facets of Dyslipidemia and Hypertension in Atherosclerosis - PubMed (original) (raw)
Review
The Different Facets of Dyslipidemia and Hypertension in Atherosclerosis
Jessica Hurtubise et al. Curr Atheroscler Rep. 2016 Dec.
Abstract
Atherosclerosis is the narrowing of arteries due to the accumulation of macrophages overloaded with lipids resulting in foam cell formation, and these events occur preferentially at the branching points of arteries which are particularly susceptible to hyperlipidemic stress-induced inflammation and oxidative stress. The different stages of atherogenesis rely on oxidative stress, endothelial dysfunction, and inflammation, and hypertension or dyslipidemia can independently trigger these stages. Dyslipidemia and hypertension are pathological conditions that damage the endothelium, triggering cell proliferation, vascular remodeling, apoptosis, and increased cellular permeability with increased adhesion molecules that bind monocytes and T lymphocytes to create a vicious cocktail of pathophysiological factors. Correspondingly, the factors are redirected by chemo-attractants and pro-inflammatory cytokines into the intima of the vasculature, where monocytes differentiate into macrophages taking up oxidized LDL uncontrollably to form foam cells and atherosclerotic lesions. Moreover, endothelial damage also causes loss of vasomotor activity, disproportionate vascular contractility, and elevation of blood pressure in dyslipidemic patients, while in hypertensive patients, further elevation of blood pressure occurs, creating a self-perpetuating vicious cycle that aggravates the development and progression of atherosclerotic lesions. This review offers an in-depth analysis of atherosclerosis and the related interplay between dyslipidemia/hypertension and critically appraises the current diagnosis, etiology, and therapeutic options.
Keywords: Dyslipidemia; Endothelial dysfunction; High-density lipoprotein; Hypertension; Inflammation; Low-density lipoprotein; Oxidative stress.
Similar articles
- Dyslipidemia Part 1--Review of Lipid Metabolism and Vascular Cell Physiology.
Helkin A, Stein JJ, Lin S, Siddiqui S, Maier KG, Gahtan V. Helkin A, et al. Vasc Endovascular Surg. 2016 Feb;50(2):107-18. doi: 10.1177/1538574416628654. Vasc Endovascular Surg. 2016. PMID: 26983667 Review. - Biglycan and atherosclerosis: Lessons from high cardiovascular risk conditions.
Scuruchi M, Potì F, Rodríguez-Carrio J, Campo GM, Mandraffino G. Scuruchi M, et al. Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Feb;1865(2):158545. doi: 10.1016/j.bbalip.2019.158545. Epub 2019 Oct 28. Biochim Biophys Acta Mol Cell Biol Lipids. 2020. PMID: 31672572 Review. - Dual signaling evoked by oxidized LDLs in vascular cells.
Nègre-Salvayre A, Augé N, Camaré C, Bacchetti T, Ferretti G, Salvayre R. Nègre-Salvayre A, et al. Free Radic Biol Med. 2017 May;106:118-133. doi: 10.1016/j.freeradbiomed.2017.02.006. Epub 2017 Feb 9. Free Radic Biol Med. 2017. PMID: 28189852 Review. - Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE-/- mice and cultured endothelial cells.
Cao Y, Jacobsen NR, Danielsen PH, Lenz AG, Stoeger T, Loft S, Wallin H, Roursgaard M, Mikkelsen L, Møller P. Cao Y, et al. Toxicol Sci. 2014 Mar;138(1):104-16. doi: 10.1093/toxsci/kft328. Epub 2014 Jan 15. Toxicol Sci. 2014. PMID: 24431218 - [Dyslipidemia and atherosclerosis].
Koba S, Hirano T. Koba S, et al. Nihon Rinsho. 2011 Jan;69(1):138-43. Nihon Rinsho. 2011. PMID: 21226274 Review. Japanese.
Cited by
- Colloidal Particles in Tuna Head Soup: Chemical Localization, Structural Change, and Antioxidant Property.
Ma C, Liu P, Tao N, Wang X, Deng S. Ma C, et al. Front Nutr. 2021 Mar 29;8:638390. doi: 10.3389/fnut.2021.638390. eCollection 2021. Front Nutr. 2021. PMID: 33855041 Free PMC article. - The association between dyslipidaemia in the first trimester and adverse pregnancy outcomes in pregnant women with subclinical hypothyroidism: a cohort study.
Wang X, Zhang E, Tian Z, Zhao R, Huang K, Gao S, Su S, Xie S, Liu J, Luan Y, Zhang Y, Zhang Z, Yan Y, Yue W, Yin C, Liu R. Wang X, et al. Lipids Health Dis. 2024 Jan 11;23(1):13. doi: 10.1186/s12944-023-01998-7. Lipids Health Dis. 2024. PMID: 38212787 Free PMC article. - Cardiometabolic Risk Factors Associated With Type 2 Diabetes Mellitus: A Mechanistic Insight.
Chakraborty S, Verma A, Garg R, Singh J, Verma H. Chakraborty S, et al. Clin Med Insights Endocrinol Diabetes. 2023 Dec 25;16:11795514231220780. doi: 10.1177/11795514231220780. eCollection 2023. Clin Med Insights Endocrinol Diabetes. 2023. PMID: 38148756 Free PMC article. Review. - Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective.
Yu W, Ilyas I, Hu X, Xu S, Yu H. Yu W, et al. Front Immunol. 2022 Dec 21;13:1072007. doi: 10.3389/fimmu.2022.1072007. eCollection 2022. Front Immunol. 2022. PMID: 36618414 Free PMC article. Review. - Dyslipidemia may be a risk factor for progression in children with IgA nephropathy.
Zhuang H, Lin Z, Zeng S, Jiang M, Chen L, Jiang X, Xu Y. Zhuang H, et al. Pediatr Nephrol. 2022 Dec;37(12):3147-3156. doi: 10.1007/s00467-022-05480-x. Epub 2022 Mar 28. Pediatr Nephrol. 2022. PMID: 35347403
References
- Circulation. 2003 Jun 24;107(24):3109-16 - PubMed
- Circulation. 2015 Feb 3;131(5):495-502 - PubMed
- Stroke. 1997 Jan;28(1):88-94 - PubMed
- Circ Res. 1983 Oct;53(4):502-14 - PubMed
- Hypertens Res. 2010 Apr;33(4):338-47 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical