The nuclear pore complex: understanding its function through structural insight - PubMed (original) (raw)
Review
doi: 10.1038/nrm.2016.147. Epub 2016 Dec 21.
Affiliations
- PMID: 27999437
- DOI: 10.1038/nrm.2016.147
Review
The nuclear pore complex: understanding its function through structural insight
Martin Beck et al. Nat Rev Mol Cell Biol. 2017 Feb.
Abstract
Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. They are large macromolecular assemblies with a complex composition and diverse functions. Apart from facilitating nucleocytoplasmic transport, NPCs are involved in chromatin organization, the regulation of gene expression and DNA repair. Understanding the molecular mechanisms underlying these functions has been hampered by a lack of structural knowledge about the NPC. The recent convergence of crystallographic and biochemical in vitro analysis of nucleoporins (NUPs), the components of the NPC, with cryo-electron microscopic imaging of the entire NPC in situ has provided first pseudo-atomic view of its central core and revealed that an unexpected network of short linear motifs is an important spatial organization principle. These breakthroughs have transformed the way we understand NPC structure, and they provide an important base for functional investigations, including the elucidation of the molecular mechanisms underlying clinically manifested mutations of the nucleocytoplasmic transport system.
Similar articles
- Structure and Assembly of the Nuclear Pore Complex.
Hampoelz B, Andres-Pons A, Kastritis P, Beck M. Hampoelz B, et al. Annu Rev Biophys. 2019 May 6;48:515-536. doi: 10.1146/annurev-biophys-052118-115308. Epub 2019 Apr 3. Annu Rev Biophys. 2019. PMID: 30943044 Review. - Functional architecture of the nuclear pore complex.
Grossman E, Medalia O, Zwerger M. Grossman E, et al. Annu Rev Biophys. 2012;41:557-84. doi: 10.1146/annurev-biophys-050511-102328. Annu Rev Biophys. 2012. PMID: 22577827 Review. - Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions.
Raices M, D'Angelo MA. Raices M, et al. Nat Rev Mol Cell Biol. 2012 Nov;13(11):687-99. doi: 10.1038/nrm3461. Nat Rev Mol Cell Biol. 2012. PMID: 23090414 Review. - AI-based structure prediction empowers integrative structural analysis of human nuclear pores.
Mosalaganti S, Obarska-Kosinska A, Siggel M, Taniguchi R, Turoňová B, Zimmerli CE, Buczak K, Schmidt FH, Margiotta E, Mackmull MT, Hagen WJH, Hummer G, Kosinski J, Beck M. Mosalaganti S, et al. Science. 2022 Jun 10;376(6598):eabm9506. doi: 10.1126/science.abm9506. Epub 2022 Jun 10. Science. 2022. PMID: 35679397 - Structural analysis of the nuclear pore complex by integrated approaches.
Elad N, Maimon T, Frenkiel-Krispin D, Lim RY, Medalia O. Elad N, et al. Curr Opin Struct Biol. 2009 Apr;19(2):226-32. doi: 10.1016/j.sbi.2009.02.009. Epub 2009 Mar 25. Curr Opin Struct Biol. 2009. PMID: 19327984 Review.
Cited by
- A Boy with Sandestig-Stefanova Syndrome and Genital Abnormalities.
Korulmaz A, Başer B, Alakaya M, Arslanköylü AE. Korulmaz A, et al. Mol Syndromol. 2022 Jul;13(4):343-349. doi: 10.1159/000521331. Epub 2022 Mar 2. Mol Syndromol. 2022. PMID: 36158057 Free PMC article. - T-cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1-SUMO1/Ubc9 nuclear pore subcomplex via PKC-θ-mediated phosphorylation of RanGAP1.
He Y, Yang Z, Zhao CS, Xiao Z, Gong Y, Li YY, Chen Y, Du Y, Feng D, Altman A, Li Y. He Y, et al. Elife. 2021 Jun 10;10:e67123. doi: 10.7554/eLife.67123. Elife. 2021. PMID: 34110283 Free PMC article. - Modeling HIV-1 nuclear entry with nucleoporin-gated DNA-origami channels.
Shen Q, Feng Q, Wu C, Xiong Q, Tian T, Yuan S, Shi J, Bedwell GJ, Yang R, Aiken C, Engelman AN, Lusk CP, Lin C, Xiong Y. Shen Q, et al. Nat Struct Mol Biol. 2023 Apr;30(4):425-435. doi: 10.1038/s41594-023-00925-9. Epub 2023 Feb 20. Nat Struct Mol Biol. 2023. PMID: 36807645 Free PMC article. - NUP133 Controls Nuclear Pore Assembly, Transcriptome Composition, and Cytoskeleton Regulation in Podocytes.
Rogg M, Maier JI, Ehle M, Sammarco A, Schilling O, Werner M, Schell C. Rogg M, et al. Cells. 2022 Apr 7;11(8):1259. doi: 10.3390/cells11081259. Cells. 2022. PMID: 35455939 Free PMC article. - In Vivo Expression of NUP93 and Its Alteration by NUP93 Mutations Causing Focal Segmental Glomerulosclerosis.
Hashimoto T, Harita Y, Takizawa K, Urae S, Ishizuka K, Miura K, Horita S, Ogino D, Tamiya G, Ishida H, Mitsui T, Hayasaka K, Hattori M. Hashimoto T, et al. Kidney Int Rep. 2019 May 31;4(9):1312-1322. doi: 10.1016/j.ekir.2019.05.1157. eCollection 2019 Sep. Kidney Int Rep. 2019. PMID: 31517150 Free PMC article.
References
- Cell. 1990 Jun 15;61(6):965-78 - PubMed
- Trends Genet. 1995 Jun;11(6):235-41 - PubMed
- EMBO J. 1990 May;9(5):1495-502 - PubMed
- Mol Syst Biol. 2013;9:648 - PubMed
- Dev Cell. 2015 May 4;33(3):285-98 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases