Microglial activation in Parkinson's disease using [18F]-FEPPA - PubMed (original) (raw)

Microglial activation in Parkinson's disease using [18F]-FEPPA

Christine Ghadery et al. J Neuroinflammation. 2017.

Abstract

Background: Neuroinflammatory processes including activated microglia have been reported to play an important role in Parkinson's disease (PD). Increased expression of translocator protein (TSPO) has been observed after brain injury and inflammation in neurodegenerative diseases. Positron emission tomography (PET) radioligand targeting TSPO allows for the quantification of neuroinflammation in vivo.

Methods: Based on the genotype of the rs6791 polymorphism in the TSPO gene, we included 25 mixed-affinity binders (MABs) (14 PD patients and 11 age-matched healthy controls (HC)) and 27 high-affinity binders (HABs) (16 PD patients and 11 age-matched HC) to assess regional differences in the second-generation radioligand [18F]-FEPPA between PD patients and HC. FEPPA total distribution volume (V T) values in cortical as well as subcortical brain regions were derived from a two-tissue compartment model with arterial plasma as an input function.

Results: Our results revealed a significant main effect of genotype on [18F]-FEPPA V T in every brain region, but no main effect of disease or disease × genotype interaction in any brain region. The overall percentage difference of the mean FEPPA V T between HC-MABs and HC-HABs was 32.6% (SD = 2.09) and for PD-MABs and PD-HABs was 43.1% (SD = 1.21).

Conclusions: Future investigations are needed to determine the significance of [18F]-FEPPA as a biomarker of neuroinflammation as well as the importance of the rs6971 polymorphism and its clinical consequence in PD.

Keywords: Neuroinflammation; PET; Parkinson’s disease; TSPO imaging.

PubMed Disclaimer

Figures

Fig. 1

Fig. 1

Graphs of partial volume effect corrected (PVEC) total distribution volume (V T) in different brain regions. Healthy control with mixed affinity binder (HC-MAB) and healthy control with high affinity binder (HC-HAB) groups as well as Parkinson’s disease with mixed affinity binder (PD-MAB) and Parkinson’s disease with high affinity binder (PD-HAB) groups. Asterisks indicate that the HAB groups show significantly higher V T mean values compared with the MAB groups

Fig. 2

Fig. 2

Graphs of partial volume effect corrected (PVEC) total distribution volume (V T) in different brain regions. Healthy control with mixed affinity binder (HC-MAB) and healthy control with high affinity binder (HC-HAB) groups as well as Parkinson’s disease with mixed affinity binder (PD-MAB) and Parkinson’s disease with high affinity binder (PD-HAB) groups. Asterisks indicate that the HAB groups show significantly higher V T mean values compared with the MAB groups

Fig. 3

Fig. 3

Graphs of partial volume effect corrected (PVEC) total distribution volume (V T) in different brain regions. Healthy control with mixed affinity binder (HC-MAB) and healthy control with high affinity binder (HC-HAB) groups as well as Parkinson’s disease with mixed affinity binder (PD-MAB) and Parkinson’s disease with high affinity binder (PD-HAB) groups. Asterisks indicate that the HAB groups show significantly higher V T mean values compared with the MAB groups

Similar articles

Cited by

References

    1. Tanner CM, Goldman SM. Epidemiology of Parkinson's disease. Neurol Clin. 1996;14(2):317–335. doi: 10.1016/S0733-8619(05)70259-0. - DOI - PMC - PubMed
    1. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988;38(8):1285–1291. doi: 10.1212/WNL.38.8.1285. - DOI - PubMed
    1. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains. Acta Neuropathol. 2003;106(6):518–526. doi: 10.1007/s00401-003-0766-2. - DOI - PubMed
    1. Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett. 1994;180(2):147–150. doi: 10.1016/0304-3940(94)90508-8. - DOI - PubMed
    1. Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW. Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand. 1999;100(1):34–41. doi: 10.1111/j.1600-0404.1999.tb00721.x. - DOI - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources