Evidence that the glucose transporter serves as a water channel in J774 macrophages - PubMed (original) (raw)
Evidence that the glucose transporter serves as a water channel in J774 macrophages
J Fischbarg et al. Proc Natl Acad Sci U S A. 1989 Nov.
Abstract
Water transport across plasma membranes is a universal property of cells, but the route of such transport is unclear. In this study, volume changes of cells of the J774 murine macrophage-like cell line were monitored by recording the intensity of light scattered by the cells. We investigated the effects of several inhibitors of glucose transport on cell membrane osmotic water permeability as calculated from the rates of cell volume change. Cytochalasin B (2.5 micrograms/ml), phloretin (20 microM), and tomatine (3 microM) reversibly blocked glucose uptake into these cells. All three inhibitors reversibly decreased the osmotic water permeability of J774 cells from 89.6 +/- 3.2 to 27.2 +/- 1.4 microns/sec. We conclude that a major component of the osmotic water flow across the plasma membranes of these cells is accounted for by water traversing their glucose transporters.
Similar articles
- Optical measurement of osmotic water transport in cultured cells. Role of glucose transporters.
Echevarria M, Verkman AS. Echevarria M, et al. J Gen Physiol. 1992 Apr;99(4):573-89. doi: 10.1085/jgp.99.4.573. J Gen Physiol. 1992. PMID: 1597679 Free PMC article. - Role of facilitative glucose transporters in diffusional water permeability through J774 cells.
Loike JD, Cao L, Kuang K, Vera JC, Silverstein SC, Fischbarg J. Loike JD, et al. J Gen Physiol. 1993 Nov;102(5):897-906. doi: 10.1085/jgp.102.5.897. J Gen Physiol. 1993. PMID: 8301262 Free PMC article. - Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells.
Mullin JM, Kofeldt LM, Russo LM, Hagee MM, Dantzig AH. Mullin JM, et al. Am J Physiol. 1992 Mar;262(3 Pt 2):F480-7. doi: 10.1152/ajprenal.1992.262.3.F480. Am J Physiol. 1992. PMID: 1558165 - Human erythrocyte sugar transport is incompatible with available carrier models.
Cloherty EK, Heard KS, Carruthers A. Cloherty EK, et al. Biochemistry. 1996 Aug 13;35(32):10411-21. doi: 10.1021/bi953077m. Biochemistry. 1996. PMID: 8756697 - Insulin binding and glucose transport.
Hilf R, Sorge LK, Gay RJ. Hilf R, et al. Int Rev Cytol. 1981;72:147-202. doi: 10.1016/s0074-7696(08)61196-1. Int Rev Cytol. 1981. PMID: 7019131 Review. No abstract available.
Cited by
- Optical measurement of osmotic water transport in cultured cells. Role of glucose transporters.
Echevarria M, Verkman AS. Echevarria M, et al. J Gen Physiol. 1992 Apr;99(4):573-89. doi: 10.1085/jgp.99.4.573. J Gen Physiol. 1992. PMID: 1597679 Free PMC article. - From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death.
Ritter M, Bresgen N, Kerschbaum HH. Ritter M, et al. Front Cell Dev Biol. 2021 Jun 23;9:651982. doi: 10.3389/fcell.2021.651982. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 34249909 Free PMC article. Review. - Non-Aquaporin Water Channels.
Huang B, Wang H, Yang B. Huang B, et al. Adv Exp Med Biol. 2023;1398:331-342. doi: 10.1007/978-981-19-7415-1_23. Adv Exp Med Biol. 2023. PMID: 36717505 - The structural pathway for water permeation through sodium-glucose cotransporters.
Sasseville LJ, Cuervo JE, Lapointe JY, Noskov SY. Sasseville LJ, et al. Biophys J. 2011 Oct 19;101(8):1887-95. doi: 10.1016/j.bpj.2011.09.019. Biophys J. 2011. PMID: 22004742 Free PMC article. - Methods to Measure Water Permeability.
Solenov EI, Baturina GS, Katkova LE, Yang B, Zarogiannis SG. Solenov EI, et al. Adv Exp Med Biol. 2023;1398:343-361. doi: 10.1007/978-981-19-7415-1_24. Adv Exp Med Biol. 2023. PMID: 36717506
References
- J Gen Physiol. 1967 Nov;50(10):2391-405 - PubMed
- J Gen Physiol. 1962 May;45:921-32 - PubMed
- Biophys J. 1972 Jul;12(7):764-73 - PubMed
- Biochim Biophys Acta. 1972 Dec 1;290(1):414-8 - PubMed
- Cell Tissue Res. 1974;152(2):129-40 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources