Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects - PubMed (original) (raw)

Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects

Chiyo Yoshizane et al. Nutr J. 2017.

Abstract

Background: Trehalose is hydrolyzed by a specific intestinal brush-border disaccharidase (trehalase) into two glucose molecules. In animal studies, trehalose has been shown to prevent adipocyte hypertrophy and mitigate insulin resistance in mice fed a high-fat diet. Recently, we found that trehalose improved glucose tolerance in human subjects. However, the underlying metabolic responses after trehalose ingestion in humans are not well understood. Therefore, we examined the glycemic, insulinemic and incretin responses after trehalose ingestion in healthy Japanese volunteers.

Methods: In a crossover study, 20 fasted healthy volunteers consumed 25 g trehalose or glucose in 100 mL water. Blood samples were taken frequently over the following 3 h, and blood glucose, insulin, active gastric inhibitory polypeptide (GIP) and active glucagon-like peptide-1 (GLP-1) levels were measured.

Results: Trehalose ingestion did not evoke rapid increases in blood glucose levels, and had a lower stimulatory potency of insulin and active GIP secretion compared with glucose ingestion. Conversely, active GLP-1 showed higher levels from 45 to 180 min after trehalose ingestion as compared with glucose ingestion. Specifically, active GIP secretion, which induces fat accumulation, was markedly lower after trehalose ingestion.

Conclusions: Our findings indicate that trehalose may be a useful saccharide for good health because of properties that do not stimulate rapid increases in blood glucose and excessive secretion of insulin and GIP promoting fat accumulation.

Keywords: Gastric inhibitory polypeptide; Insulin; Trehalose.

PubMed Disclaimer

Figures

Fig. 1

Fig. 1

Time-course of blood glucose and insulin levels following ingestion of 25 g of trehalose or glucose. Twenty fasted healthy participants consumed 25 g of trehalose or glucose and changes in concentrations of plasma glucose and serum insulin were measured frequently. Data are expressed as means ± SE (n = 20). Data were analyzed with a 2-factor repeated-measures (Ingestion × Tine) ANOVA. ** Significant difference from trehalose and glucose: **p < 0.01 (Wilcoxon post hoc analysis)

Fig. 2

Fig. 2

Time-course of blood incretin levels following ingestion of 25 g of trehalose or glucose. Twenty fasted healthy participants consumed 25 g of trehalose or glucose and changes in concentrations of plasma active GIP and plasma active GLP-1 were measured frequently. Data are expressed as means ± SE (n = 20). Data were analyzed with a 2-factor repeated-measures (Ingestion × Time) ANOVA. *,** Significant difference from trehalose and glucose: *p < 0.05, **p < 0.01. (Wilcoxon post hoc analysis)

Similar articles

Cited by

References

    1. Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13:17R–27R. doi: 10.1093/glycob/cwg047. - DOI - PubMed
    1. Colaço C, Sen S, Thangavelu M, Pinder S, Rose B. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Biotechnology (N Y) 1992;10:1007–11. doi: 10.1038/nbt0992-1007. - DOI - PubMed
    1. Arai C, Arai N, Mizote A, Kohno K, Iwaki K, Hanaya T, Arai S, Ushio S, Fukuda S. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance. Nutr Res. 2010;30:840–8. doi: 10.1016/j.nutres.2010.10.009. - DOI - PubMed
    1. Arai C, Miyake M, Matsumoto Y, Mizote A, Yoshizane C, Hanaya Y, Koide K, Yamada M, Hanaya T, Arai S, Fukuda S. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in mice with established obesity. J Nutr Sci Vitaminol. 2013;59:393–401. doi: 10.3177/jnsv.59.393. - DOI - PubMed
    1. Nishizaki Y, Yoshizane C, Toshimori Y, Arai N, Akamatsu S, Hanaya T, Arai S, Ikeda M, Kurimoto M. Disaccharide-trehalose inhibits bone resorption in ovariectomized mice. Nutr Res. 2000;20:653–64. doi: 10.1016/S0271-5317(00)00155-X. - DOI

MeSH terms

Substances

LinkOut - more resources