Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates - PubMed (original) (raw)
. 2011 Feb;157(2):430-437.
doi: 10.1099/mic.0.045732-0.
Affiliations
- PMID: 28206903
- DOI: 10.1099/mic.0.045732-0
Free article
Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates
K C Cady et al. Microbiology (Reading). 2011 Feb.
Free article
Abstract
Here, we report the characterization of 122 Pseudomonas aeruginosa clinical isolates from three distinct geographical locations: Dartmouth Hitchcock Medical Center in New Hampshire, USA, the Charles T. Campbell Eye Microbiology Lab at the University of Pittsburgh Medical Center, USA, and the Aravind Eye Hospital in Madurai, India. We identified and located clustered regularly interspaced short palindromic repeats (CRISPR) in 45/122 clinical isolates and sequenced these CRISPR, finding that Yersinia subtype CRISPR regions (33 %) were more prevalent than the Escherichia CRISPR region subtype (6 %) in these P. aeruginosa clinical isolates. Further, we observed 132 unique spacers from these 45 CRISPR that are 100 % identical to prophages or sequenced temperate bacteriophage capable of becoming prophages. Most intriguingly, all of these 132 viral spacers matched to temperate bacteriophage/prophages capable of inserting into the host chromosome, but not to extrachromosomally replicating lytic P. aeruginosa bacteriophage. We next assessed the ability of the more prevalent Yersinia subtype CRISPR regions to mediate resistance to bacteriophage infection or lysogeny by deleting the entire CRISPR region from sequenced strain UCBPP-PA14 and six clinical isolates. We found no change in CRISPR-mediated resistance to bacteriophage infection or lysogeny rate even for CRISPR with spacers 100 % identical to a region of the infecting bacteriophage. Lastly, to show these CRISPR and cas genes were expressed and functional, we demonstrated production of small CRISPR RNAs. This work provides both the first examination to our knowledge of CRISPR regions within clinical P. aeruginosa isolates and a collection of defined CRISPR-positive and -negative strains for further CRISPR and cas gene studies.
Similar articles
- Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates.
Cady KC, White AS, Hammond JH, Abendroth MD, Karthikeyan RS, Lalitha P, Zegans ME, O'Toole GA. Cady KC, et al. Microbiology (Reading). 2011 Feb;157(Pt 2):430-7. doi: 10.1099/mic.0.045732-0. Epub 2010 Nov 16. Microbiology (Reading). 2011. PMID: 21081758 Free PMC article. - Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins.
Cady KC, O'Toole GA. Cady KC, et al. J Bacteriol. 2011 Jul;193(14):3433-45. doi: 10.1128/JB.01411-10. Epub 2011 Mar 11. J Bacteriol. 2011. PMID: 21398535 Free PMC article. - Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
Heussler GE, Cady KC, Koeppen K, Bhuju S, Stanton BA, O'Toole GA. Heussler GE, et al. mBio. 2015 May 12;6(3):e00129-15. doi: 10.1128/mBio.00129-15. mBio. 2015. PMID: 25968642 Free PMC article. - Analysis of direct repeats and spacers of CRISPR/Cas systems type I-F in Brazilian clinical strains of Pseudomonas aeruginosa.
Luz ACO, da Silva JMA, Rezende AM, de Barros MPS, Leal-Balbino TC. Luz ACO, et al. Mol Genet Genomics. 2019 Oct;294(5):1095-1105. doi: 10.1007/s00438-019-01575-7. Epub 2019 May 16. Mol Genet Genomics. 2019. PMID: 31098740 Review. - Role of CRISPR/cas system in the development of bacteriophage resistance.
Szczepankowska A. Szczepankowska A. Adv Virus Res. 2012;82:289-338. doi: 10.1016/B978-0-12-394621-8.00011-X. Adv Virus Res. 2012. PMID: 22420856 Review.
Cited by
- Whole-genome sequencing and identification of Morganella morganii KT pathogenicity-related genes.
Chen YT, Peng HL, Shia WC, Hsu FR, Ken CF, Tsao YM, Chen CH, Liu CE, Hsieh MF, Chen HC, Tang CY, Ku TH. Chen YT, et al. BMC Genomics. 2012;13 Suppl 7(Suppl 7):S4. doi: 10.1186/1471-2164-13-S7-S4. Epub 2012 Dec 13. BMC Genomics. 2012. PMID: 23282187 Free PMC article. - Nutrient Availability and Phage Exposure Alter the Quorum-Sensing and CRISPR-Cas-Controlled Population Dynamics of Pseudomonas aeruginosa.
Ahator SD, Sagar S, Zhu M, Wang J, Zhang LH. Ahator SD, et al. mSystems. 2022 Aug 30;7(4):e0009222. doi: 10.1128/msystems.00092-22. Epub 2022 Jun 14. mSystems. 2022. PMID: 35699339 Free PMC article. - CRISPRTarget: bioinformatic prediction and analysis of crRNA targets.
Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM. Biswas A, et al. RNA Biol. 2013 May;10(5):817-27. doi: 10.4161/rna.24046. Epub 2013 Mar 14. RNA Biol. 2013. PMID: 23492433 Free PMC article. - Engineered Bacteriophages Containing Anti-CRISPR Suppress Infection of Antibiotic-Resistant P. aeruginosa.
Qin S, Liu Y, Chen Y, Hu J, Xiao W, Tang X, Li G, Lin P, Pu Q, Wu Q, Zhou C, Wang B, Gao P, Wang Z, Yan A, Nadeem K, Xia Z, Wu M. Qin S, et al. Microbiol Spectr. 2022 Oct 26;10(5):e0160222. doi: 10.1128/spectrum.01602-22. Epub 2022 Aug 16. Microbiol Spectr. 2022. PMID: 35972246 Free PMC article. - A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa.
Pawluk A, Bondy-Denomy J, Cheung VH, Maxwell KL, Davidson AR. Pawluk A, et al. mBio. 2014 Apr 15;5(2):e00896. doi: 10.1128/mBio.00896-14. mBio. 2014. PMID: 24736222 Free PMC article.
LinkOut - more resources
Full Text Sources
Miscellaneous