Mitochondrial DNA of the extinct quagga: relatedness and extent of postmortem change - PubMed (original) (raw)
Comparative Study
doi: 10.1007/BF02603111.
Affiliations
- PMID: 2822938
- DOI: 10.1007/BF02603111
Comparative Study
Mitochondrial DNA of the extinct quagga: relatedness and extent of postmortem change
R G Higuchi et al. J Mol Evol. 1987.
Abstract
Sequences are reported for portions of two mitochondrial genes from a domestic horse and a plains zebra and compared to those published for a quagga and a mountain zebra. The extinct quagga and plains zebra sequences are identical at all silent sites, whereas the horse sequence differs from both of them by 11 silent substitutions. Postmortem changes in quagga DNA may account for the two coding substitutions between the quagga and plains zebra sequences. The hypothesis that the closest relative of the quagga is the domestic horse receives no support from these data. From the extent of sequence divergence between horse and zebra mitochondrial DNAs (mtDNAs), as well as from information about the fossil record, we estimate that the mean rate of mtDNA divergence in Equus is similar to that in other mammals, i.e., roughly 2% per million years.
Similar articles
- Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution.
Thomas WK, Beckenbach AT. Thomas WK, et al. J Mol Evol. 1989 Sep;29(3):233-45. doi: 10.1007/BF02100207. J Mol Evol. 1989. PMID: 2550657 - DNA sequences from the quagga, an extinct member of the horse family.
Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. Higuchi R, et al. Nature. 1984 Nov 15-21;312(5991):282-4. doi: 10.1038/312282a0. Nature. 1984. PMID: 6504142 - A rapid loss of stripes: the evolutionary history of the extinct quagga.
Leonard JA, Rohland N, Glaberman S, Fleischer RC, Caccone A, Hofreiter M. Leonard JA, et al. Biol Lett. 2005 Sep 22;1(3):291-5. doi: 10.1098/rsbl.2005.0323. Biol Lett. 2005. PMID: 17148190 Free PMC article. - Mitochondrial DNA evolution in the genus Equus.
George M Jr, Ryder OA. George M Jr, et al. Mol Biol Evol. 1986 Nov;3(6):535-46. doi: 10.1093/oxfordjournals.molbev.a040414. Mol Biol Evol. 1986. PMID: 2832696
Cited by
- Tracking the origins of the cave bear (Ursus spelaeus) by mitochondrial DNA sequencing.
Hänni C, Laudet V, Stehelin D, Taberlet P. Hänni C, et al. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12336-40. doi: 10.1073/pnas.91.25.12336. Proc Natl Acad Sci U S A. 1994. PMID: 7991628 Free PMC article. - Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution.
Thomas WK, Beckenbach AT. Thomas WK, et al. J Mol Evol. 1989 Sep;29(3):233-45. doi: 10.1007/BF02100207. J Mol Evol. 1989. PMID: 2550657 - Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila.
DeSalle R, Freedman T, Prager EM, Wilson AC. DeSalle R, et al. J Mol Evol. 1987;26(1-2):157-64. doi: 10.1007/BF02111289. J Mol Evol. 1987. PMID: 3125333 - Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification.
Pääbo S. Pääbo S. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1939-43. doi: 10.1073/pnas.86.6.1939. Proc Natl Acad Sci U S A. 1989. PMID: 2928314 Free PMC article.
References
- Nature. 1981 Apr 9;290(5806):457-65 - PubMed
- Nature. 1985 Apr 18-24;314(6012):644-5 - PubMed
- J Mol Evol. 1982;18(4):225-39 - PubMed
- Cold Spring Harb Symp Quant Biol. 1986;51 Pt 1:441-6 - PubMed
- Annu Rev Biochem. 1982;51:61-87 - PubMed