The three-finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions - PubMed (original) (raw)
Review
. 2017 Aug:142 Suppl 2:7-18.
doi: 10.1111/jnc.13975. Epub 2017 Mar 21.
Affiliations
- PMID: 28326549
- DOI: 10.1111/jnc.13975
Free article
Review
The three-finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions
Pascal Kessler et al. J Neurochem. 2017 Aug.
Free article
Abstract
Three-finger fold toxins are miniproteins frequently found in Elapidae snake venoms. This fold is characterized by three distinct loops rich in β-strands and emerging from a dense, globular core reticulated by four highly conserved disulfide bridges. The number and diversity of receptors, channels, and enzymes identified as targets of three-finger fold toxins is increasing continuously. Such manifold diversity highlights the specific adaptability of this fold for generating pleiotropic functions. Although this toxin superfamily disturbs many biological functions by interacting with a large diversity of molecular targets, the most significant target is the cholinergic system. By blocking the activity of the nicotinic and muscarinic acetylcholine receptors or by inhibiting the enzyme acetylcholinesterase, three-finger fold toxins interfere most drastically with neuromuscular junction functioning. Several of these toxins have become powerful pharmacological tools for studying the function and structure of their molecular targets. Most importantly, since dysfunction of these receptors/enzyme is involved in many diseases, exploiting the three-finger scaffold to create novel, highly specific therapeutic agents may represent a major future endeavor. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Keywords: acetylcholinesterase; cholinergic system; muscarinic acetylcholine receptor; nicotinic acetylcholine receptor; snake venom; three-finger fold toxin.
© 2017 International Society for Neurochemistry.
Similar articles
- How three-finger-fold toxins interact with various cholinergic receptors.
Fruchart-Gaillard C, Mourier G, Marquer C, Ménez A, Servent D. Fruchart-Gaillard C, et al. J Mol Neurosci. 2006;30(1-2):7-8. doi: 10.1385/JMN:30:1:7. J Mol Neurosci. 2006. PMID: 17192604 - Muscarinic toxins: tools for the study of the pharmacological and functional properties of muscarinic receptors.
Servent D, Fruchart-Gaillard C. Servent D, et al. J Neurochem. 2009 Jun;109(5):1193-202. doi: 10.1111/j.1471-4159.2009.06092.x. Epub 2009 Apr 23. J Neurochem. 2009. PMID: 19457160 Review. - New α-adrenergic property for synthetic MTβ and CM-3 three-finger fold toxins from black mamba.
Blanchet G, Upert G, Mourier G, Gilquin B, Gilles N, Servent D. Blanchet G, et al. Toxicon. 2013 Dec 1;75:160-7. doi: 10.1016/j.toxicon.2013.04.017. Epub 2013 May 3. Toxicon. 2013. PMID: 23648423 - Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors.
Karlsson E, Jolkkonen M, Mulugeta E, Onali P, Adem A. Karlsson E, et al. Biochimie. 2000 Sep-Oct;82(9-10):793-806. doi: 10.1016/s0300-9084(00)01176-7. Biochimie. 2000. PMID: 11086210 Review. - Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine.
Nirthanan S. Nirthanan S. Biochem Pharmacol. 2020 Nov;181:114168. doi: 10.1016/j.bcp.2020.114168. Epub 2020 Jul 23. Biochem Pharmacol. 2020. PMID: 32710970 Review.
Cited by
- Triscysteine disulfide-directing motifs enabling design and discovery of multicyclic peptide binders.
Duan Z, Kong C, Fan S, Wu C. Duan Z, et al. Nat Commun. 2024 Sep 6;15(1):7799. doi: 10.1038/s41467-024-51723-w. Nat Commun. 2024. PMID: 39242578 Free PMC article. - Exploring the effects of three-finger toxins from Naja ashei venom on neuronal and immunological cancer cell membranes.
Dyba B, Rudolphi-Szydło E, Kreczmer B, Barbasz A, Petrilla V, Petrillova M, Legáth J, Bocian A, Hus KK. Dyba B, et al. Sci Rep. 2024 Aug 10;14(1):18570. doi: 10.1038/s41598-024-69459-4. Sci Rep. 2024. PMID: 39127758 Free PMC article. - Protein Painting Mass Spectrometry in the Discovery of Interaction Sites within the Acetylcholine Binding Protein.
Graur A, Haymond A, Lee KH, Viscarra F, Russo P, Luchini A, Paige M, Bermudez-Diaz I, Kabbani N. Graur A, et al. ACS Chem Neurosci. 2024 Jun 5;15(11):2322-2333. doi: 10.1021/acschemneuro.4c00149. Epub 2024 May 28. ACS Chem Neurosci. 2024. PMID: 38804618 Free PMC article. - The Cloning and Characterization of a Three-Finger Toxin Homolog (NXH8) from the Coralsnake Micrurus corallinus That Interacts with Skeletal Muscle Nicotinic Acetylcholine Receptors.
Roman-Ramos H, Prieto-da-Silva ÁRB, Dellê H, Floriano RS, Dias L, Hyslop S, Schezaro-Ramos R, Servent D, Mourier G, de Oliveira JL, Lemes DE, Costa-Lotufo LV, Oliveira JS, Menezes MC, Markus RP, Ho PL. Roman-Ramos H, et al. Toxins (Basel). 2024 Mar 22;16(4):164. doi: 10.3390/toxins16040164. Toxins (Basel). 2024. PMID: 38668589 Free PMC article. - Acetylcholine-Binding Protein Affinity Profiling of Neurotoxins in Snake Venoms with Parallel Toxin Identification.
Palermo G, Schouten WM, Alonso LL, Ulens C, Kool J, Slagboom J. Palermo G, et al. Int J Mol Sci. 2023 Nov 26;24(23):16769. doi: 10.3390/ijms242316769. Int J Mol Sci. 2023. PMID: 38069093 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources