Natural selection and the molecular clock - PubMed (original) (raw)
Natural selection and the molecular clock
J H Gillespie. Mol Biol Evol. 1986 Mar.
Abstract
This paper concludes that the statistical properties of protein evolution are compatible with a particular model of evolution by natural selection. The argument begins with a statistical description of the molecular clock based on a Poisson process with a randomly varying tick rate. If the time scale of the change of the tick rate of the molecular clock is assumed to be much less than the average time between substitutions, then it is shown that the substitution process must be episodic, with bursts of substitutions being separated by long periods of time with no substitutions. This analysis generalizes the recent work of Gillespie (1984a). The second part of the argument shows that a simple model of evolution by natural selection--one that incorporates a changing environment, the molecular landscape, and a simple form of epistasis--exhibits dynamics that are identical to those inferred from the statistical analysis. This leads to the conclusion that natural selection is a viable explanation for protein evolution. In addition, a correction formula for multiple substitutions is given that does not require that the substitution process be a Poisson process, and some comments on the inability of the neutral allele theory to account for the dynamics of the substitution process are presented.
Similar articles
- Fitting discrete probability distributions to evolutionary events.
Uzzell T, Corbin KW. Uzzell T, et al. Science. 1971 Jun 11;172(3988):1089-96. doi: 10.1126/science.172.3988.1089. Science. 1971. PMID: 5574514 - The molecular clock may be an episodic clock.
Gillespie JH. Gillespie JH. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8009-13. doi: 10.1073/pnas.81.24.8009. Proc Natl Acad Sci U S A. 1984. PMID: 6595674 Free PMC article. - Statistical models of the overdispersed molecular clock.
Takahata N. Takahata N. Theor Popul Biol. 1991 Jun;39(3):329-44. doi: 10.1016/0040-5809(91)90027-d. Theor Popul Biol. 1991. PMID: 1896948 - [Molecular evolution at the level of proteins].
Acher R. Acher R. Biochimie. 1974;56(1):1-19. doi: 10.1016/s0300-9084(74)80351-2. Biochimie. 1974. PMID: 4367853 Review. French. No abstract available. - Molecular evolutionary clock and the neutral theory.
Kimura M. Kimura M. J Mol Evol. 1987;26(1-2):24-33. doi: 10.1007/BF02111279. J Mol Evol. 1987. PMID: 3125335 Review.
Cited by
- Modeling Substitution Rate Evolution across Lineages and Relaxing the Molecular Clock.
Mello B, Schrago CG. Mello B, et al. Genome Biol Evol. 2024 Sep 3;16(9):evae199. doi: 10.1093/gbe/evae199. Genome Biol Evol. 2024. PMID: 39332907 Free PMC article. Review. - Neutral Theory and Rapidly Evolving Viral Pathogens.
Frost SDW, Magalis BR, Kosakovsky Pond SL. Frost SDW, et al. Mol Biol Evol. 2018 Jun 1;35(6):1348-1354. doi: 10.1093/molbev/msy088. Mol Biol Evol. 2018. PMID: 29688481 Free PMC article. - Dynamic New World: Refining Our View of Protein Structure, Function and Evolution.
Mannige RV. Mannige RV. Proteomes. 2014 Mar 7;2(1):128-153. doi: 10.3390/proteomes2010128. Proteomes. 2014. PMID: 28250374 Free PMC article. Review. - Epistasis as the primary factor in molecular evolution.
Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA. Breen MS, et al. Nature. 2012 Oct 25;490(7421):535-8. doi: 10.1038/nature11510. Epub 2012 Oct 14. Nature. 2012. PMID: 23064225 - Epistasis increases the rate of conditionally neutral substitution in an adapting population.
Draghi JA, Parsons TL, Plotkin JB. Draghi JA, et al. Genetics. 2011 Apr;187(4):1139-52. doi: 10.1534/genetics.110.125997. Epub 2011 Feb 1. Genetics. 2011. PMID: 21288876 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources