Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification - PubMed (original) (raw)
Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
Ignacio Arganda-Carreras et al. Bioinformatics. 2017.
Abstract
Summary: State-of-the-art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This process is time-consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leverages a limited number of manual annotations in order to train a classifier and segment the remaining data automatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user-designed image features or classifiers.
Availability and implementation: TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable\_Weka\_Segmentation .
Contact: ignacio.arganda@ehu.eus.
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Similar articles
- Classifying changes in LN-18 glial cell morphology: a supervised machine learning approach to analyzing cell microscopy data via FIJI and WEKA.
Mbiki S, McClendon J, Alexander-Bryant A, Gilmore J. Mbiki S, et al. Med Biol Eng Comput. 2020 Jul;58(7):1419-1430. doi: 10.1007/s11517-020-02177-x. Epub 2020 Apr 21. Med Biol Eng Comput. 2020. PMID: 32314170 - Weka Trainable Segmentation Plugin in ImageJ: A Semi-Automatic Tool Applied to Crystal Size Distributions of Microlites in Volcanic Rocks.
Lormand C, Zellmer GF, Németh K, Kilgour G, Mead S, Palmer AS, Sakamoto N, Yurimoto H, Moebis A. Lormand C, et al. Microsc Microanal. 2018 Dec;24(6):667-675. doi: 10.1017/S1431927618015428. Microsc Microanal. 2018. PMID: 30588911 - A Cell Segmentation/Tracking Tool Based on Machine Learning.
Deter HS, Dies M, Cameron CC, Butzin NC, Buceta J. Deter HS, et al. Methods Mol Biol. 2019;2040:399-422. doi: 10.1007/978-1-4939-9686-5_19. Methods Mol Biol. 2019. PMID: 31432490 - Contemporary Advances in Computer-Assisted Bone Histomorphometry and Identification of Bone Cells in Culture.
Brent MB, Emmanuel T. Brent MB, et al. Calcif Tissue Int. 2023 Jan;112(1):1-12. doi: 10.1007/s00223-022-01035-2. Epub 2022 Oct 29. Calcif Tissue Int. 2023. PMID: 36309622 Review. - Machine learning applications in cell image analysis.
Kan A. Kan A. Immunol Cell Biol. 2017 Jul;95(6):525-530. doi: 10.1038/icb.2017.16. Epub 2017 Mar 15. Immunol Cell Biol. 2017. PMID: 28294138 Review.
Cited by
- Changes in Tea Plant Secondary Metabolite Profiles as a Function of Leafhopper Density and Damage.
Scott ER, Li X, Wei JP, Kfoury N, Morimoto J, Guo MM, Agyei A, Robbat A Jr, Ahmed S, Cash SB, Griffin TS, Stepp JR, Han WY, Orians CM. Scott ER, et al. Front Plant Sci. 2020 May 29;11:636. doi: 10.3389/fpls.2020.00636. eCollection 2020. Front Plant Sci. 2020. PMID: 32547579 Free PMC article. - Addressing the need for standardization of test methods for self-healing concrete: an inter-laboratory study on concrete with macrocapsules.
Van Mullem T, Anglani G, Dudek M, Vanoutrive H, Bumanis G, Litina C, Kwiecień A, Al-Tabbaa A, Bajare D, Stryszewska T, Caspeele R, Van Tittelboom K, Jean-Marc T, Gruyaert E, Antonaci P, De Belie N. Van Mullem T, et al. Sci Technol Adv Mater. 2020 Sep 22;21(1):661-682. doi: 10.1080/14686996.2020.1814117. Sci Technol Adv Mater. 2020. PMID: 33061839 Free PMC article. - Homogeneous multifocal excitation for high-throughput super-resolution imaging.
Mahecic D, Gambarotto D, Douglass KM, Fortun D, Banterle N, Ibrahim KA, Le Guennec M, Gönczy P, Hamel V, Guichard P, Manley S. Mahecic D, et al. Nat Methods. 2020 Jul;17(7):726-733. doi: 10.1038/s41592-020-0859-z. Epub 2020 Jun 22. Nat Methods. 2020. PMID: 32572233 - Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis.
Thornton MA, Futia GL, Stockton ME, Budoff SA, Ramirez AN, Ozbay B, Tzang O, Kilborn K, Poleg-Polsky A, Restrepo D, Gibson EA, Hughes EG. Thornton MA, et al. bioRxiv [Preprint]. 2023 Nov 1:2023.10.29.564636. doi: 10.1101/2023.10.29.564636. bioRxiv. 2023. PMID: 37961298 Free PMC article. Updated. Preprint. - ScabyNet, a user-friendly application for detecting common scab in potato tubers using deep learning and morphological traits.
Leiva F, Abdelghafour F, Alsheikh M, Nagy NE, Davik J, Chawade A. Leiva F, et al. Sci Rep. 2024 Jan 13;14(1):1277. doi: 10.1038/s41598-023-51074-4. Sci Rep. 2024. PMID: 38218867 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases