Proton electrochemical gradient: Driving and regulating neurotransmitter uptake - PubMed (original) (raw)
Review
Proton electrochemical gradient: Driving and regulating neurotransmitter uptake
Zohreh Farsi et al. Bioessays. 2017 May.
Abstract
Accumulation of neurotransmitters in the lumen of synaptic vesicles (SVs) relies on the activity of the vacuolar-type H+ -ATPase. This pump drives protons into the lumen, generating a proton electrochemical gradient (ΔμH+ ) across the membrane. Recent work has demonstrated that the balance between the chemical (ΔpH) and electrical (ΔΨ) components of ΔμH+ is regulated differently by some distinct vesicle types. As different neurotransmitter transporters use ΔpH and ΔΨ with different relative efficiencies, regulation of this gradient balance has the potential to influence neurotransmitter uptake. Nevertheless, the underlying mechanisms responsible for this regulation remain poorly understood. In this review, we provide an overview of current neurotransmitter uptake models, with a particular emphasis on the distinct roles of the electrical and chemical gradients and current hypotheses for regulatory mechanisms.
Keywords: buffering capacity; ion-proton exchangers; neurotransmitter uptake; proton electrochemical gradient; proton pump; vesicular transporters.
© 2017 WILEY Periodicals, Inc.
Similar articles
- Monitoring of vacuolar-type H+ ATPase-mediated proton influx into synaptic vesicles.
Egashira Y, Takase M, Takamori S. Egashira Y, et al. J Neurosci. 2015 Feb 25;35(8):3701-10. doi: 10.1523/JNEUROSCI.4160-14.2015. J Neurosci. 2015. PMID: 25716867 Free PMC article. - Sodium and sulfate ion transport in yeast vacuoles.
Hirata T, Wada Y, Futai M. Hirata T, et al. J Biochem. 2002 Feb;131(2):261-5. doi: 10.1093/oxfordjournals.jbchem.a003097. J Biochem. 2002. PMID: 11820941 - Neurotransmitter release: the dark side of the vacuolar-H+ATPase.
Morel N. Morel N. Biol Cell. 2003 Oct;95(7):453-7. doi: 10.1016/s0248-4900(03)00075-3. Biol Cell. 2003. PMID: 14597263 Review. - Vesicular Glutamate Uptake.
Ueda T. Ueda T. Adv Neurobiol. 2016;13:173-221. doi: 10.1007/978-3-319-45096-4_7. Adv Neurobiol. 2016. PMID: 27885630 - A role for V-ATPase subunits in synaptic vesicle fusion?
El Far O, Seagar M. El Far O, et al. J Neurochem. 2011 May;117(4):603-12. doi: 10.1111/j.1471-4159.2011.07234.x. Epub 2011 Mar 28. J Neurochem. 2011. PMID: 21375531 Review.
Cited by
- Alterations of presynaptic proteins in autism spectrum disorder.
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Yeo XY, et al. Front Mol Neurosci. 2022 Nov 17;15:1062878. doi: 10.3389/fnmol.2022.1062878. eCollection 2022. Front Mol Neurosci. 2022. PMID: 36466804 Free PMC article. Review. - VGLUT1 functions as a glutamate/proton exchanger with chloride channel activity in hippocampal glutamatergic synapses.
Martineau M, Guzman RE, Fahlke C, Klingauf J. Martineau M, et al. Nat Commun. 2017 Dec 22;8(1):2279. doi: 10.1038/s41467-017-02367-6. Nat Commun. 2017. PMID: 29273736 Free PMC article. - Presynaptic AMPA Receptors in Health and Disease.
Zanetti L, Regoni M, Ratti E, Valtorta F, Sassone J. Zanetti L, et al. Cells. 2021 Aug 31;10(9):2260. doi: 10.3390/cells10092260. Cells. 2021. PMID: 34571906 Free PMC article. Review. - Physiological Perspectives on Molecular Mechanisms and Regulation of Vesicular Glutamate Transport: Lessons From Calyx of Held Synapses.
Hori T, Takamori S. Hori T, et al. Front Cell Neurosci. 2022 Jan 13;15:811892. doi: 10.3389/fncel.2021.811892. eCollection 2021. Front Cell Neurosci. 2022. PMID: 35095427 Free PMC article. Review. - Fluorescent Indicators For Biological Imaging of Monatomic Ions.
Wu SY, Shen Y, Shkolnikov I, Campbell RE. Wu SY, et al. Front Cell Dev Biol. 2022 Apr 27;10:885440. doi: 10.3389/fcell.2022.885440. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 35573682 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials