A pretrained neural network shows similar diagnostic accuracy to medical students in categorizing dermatoscopic images after comparable training conditions - PubMed (original) (raw)
. 2017 Sep;177(3):867-869.
doi: 10.1111/bjd.15695. Epub 2017 Jul 19.
Affiliations
- PMID: 28569993
- DOI: 10.1111/bjd.15695
A pretrained neural network shows similar diagnostic accuracy to medical students in categorizing dermatoscopic images after comparable training conditions
P Tschandl et al. Br J Dermatol. 2017 Sep.
No abstract available
Similar articles
- Smartphone wallpapers for dermoscopy training in medical students and residents.
Wang FY, Liu RF, Chuang G, Yang CH, Chang YY. Wang FY, et al. Int J Dermatol. 2019 Mar;58(3):345-349. doi: 10.1111/ijd.14338. Epub 2019 Jan 17. Int J Dermatol. 2019. PMID: 30656675 - Dermatology undergraduate skin cancer training: a disconnect between recommendations, clinical exposure and competence.
Aldridge RB, Maxwell SS, Rees JL. Aldridge RB, et al. BMC Med Educ. 2012 Jul 9;12:27. doi: 10.1186/1472-6920-12-27. BMC Med Educ. 2012. PMID: 22569037 Free PMC article. - Dermatology Medical Education: A Multicenter Survey Study of the Undergraduate Perspective of the Dermatology Clinical Clerkship.
Davari P, Millsop JW, Johnson MAN, Takahashi SR, Peng DH, Badger J, Bahr BA, Shinkai K, Li CS, Fazel N. Davari P, et al. Dermatol Online J. 2017 Dec 15;23(12):13030/qt8bs7f6d5. Dermatol Online J. 2017. PMID: 29447648 - Learning dermatology.
Burge SM. Burge SM. Clin Exp Dermatol. 2004 May;29(3):337-40. doi: 10.1111/j.1365-2230.2004.01463.x. Clin Exp Dermatol. 2004. PMID: 15115536 Review. - Practice Gaps in Dermatology: Melanocytic Lesions and Melanoma.
Marino ML, Carrera C, Marchetti MA, Marghoob AA. Marino ML, et al. Dermatol Clin. 2016 Jul;34(3):353-62. doi: 10.1016/j.det.2016.03.003. Dermatol Clin. 2016. PMID: 27363893 Review.
Cited by
- Deep Learning Techniques for the Dermoscopic Differential Diagnosis of Benign/Malignant Melanocytic Skin Lesions: From the Past to the Present.
Tognetti L, Miracapillo C, Leonardelli S, Luschi A, Iadanza E, Cevenini G, Rubegni P, Cartocci A. Tognetti L, et al. Bioengineering (Basel). 2024 Jul 26;11(8):758. doi: 10.3390/bioengineering11080758. Bioengineering (Basel). 2024. PMID: 39199716 Free PMC article. Review. - Dermoscopy Differential Diagnosis Explorer (D3X) Ontology to Aggregate and Link Dermoscopic Patterns to Differential Diagnoses: Development and Usability Study.
Lin RZ, Amith MT, Wang CX, Strickley J, Tao C. Lin RZ, et al. JMIR Med Inform. 2024 Jun 21;12:e49613. doi: 10.2196/49613. JMIR Med Inform. 2024. PMID: 38904996 Free PMC article. - A systematic review and meta-analysis of artificial intelligence versus clinicians for skin cancer diagnosis.
Salinas MP, SepĂșlveda J, Hidalgo L, Peirano D, Morel M, Uribe P, Rotemberg V, Briones J, Mery D, Navarrete-Dechent C. Salinas MP, et al. NPJ Digit Med. 2024 May 14;7(1):125. doi: 10.1038/s41746-024-01103-x. NPJ Digit Med. 2024. PMID: 38744955 Free PMC article. Review. - Editorial: The Emerging Role of Artificial Intelligence in Dermatology.
Mahmood F, Bendayan S, Ghazawi FM, Litvinov IV. Mahmood F, et al. Front Med (Lausanne). 2021 Nov 17;8:751649. doi: 10.3389/fmed.2021.751649. eCollection 2021. Front Med (Lausanne). 2021. PMID: 34869445 Free PMC article. No abstract available. - Design and Assessment of Convolutional Neural Network Based Methods for Vitiligo Diagnosis.
Zhang L, Mishra S, Zhang T, Zhang Y, Zhang D, Lv Y, Lv M, Guan N, Hu XS, Chen DZ, Han X. Zhang L, et al. Front Med (Lausanne). 2021 Oct 18;8:754202. doi: 10.3389/fmed.2021.754202. eCollection 2021. Front Med (Lausanne). 2021. PMID: 34733869 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources