druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico - PubMed (original) (raw)
druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico
Artur Kadurin et al. Mol Pharm. 2017.
Abstract
Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a proof-of-concept of implementing deep generative adversarial autoencoder (AAE) to identify new molecular fingerprints with predefined anticancer properties. Another popular generative model is the variational autoencoder (VAE), which is based on deep neural architectures. In this work, we developed an advanced AAE model for molecular feature extraction problems, and demonstrated its advantages compared to VAE in terms of (a) adjustability in generating molecular fingerprints; (b) capacity of processing very large molecular data sets; and (c) efficiency in unsupervised pretraining for regression model. Our results suggest that the proposed AAE model significantly enhances the capacity and efficiency of development of the new molecules with specific anticancer properties using the deep generative models.
Keywords: adversarial autoencoder; deep learning; drug discovery; generative adversarial network; variational autoencoder.
Similar articles
- The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology.
Kadurin A, Aliper A, Kazennov A, Mamoshina P, Vanhaelen Q, Khrabrov K, Zhavoronkov A. Kadurin A, et al. Oncotarget. 2017 Feb 14;8(7):10883-10890. doi: 10.18632/oncotarget.14073. Oncotarget. 2017. PMID: 28029644 Free PMC article. - Generative chemistry: drug discovery with deep learning generative models.
Bian Y, Xie XQ. Bian Y, et al. J Mol Model. 2021 Feb 4;27(3):71. doi: 10.1007/s00894-021-04674-8. J Mol Model. 2021. PMID: 33543405 Free PMC article. Review. - Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery.
Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V, Mamoshina P, Bozdaganyan M, Aliper A, Zhavoronkov A, Kadurin A. Polykovskiy D, et al. Mol Pharm. 2018 Oct 1;15(10):4398-4405. doi: 10.1021/acs.molpharmaceut.8b00839. Epub 2018 Sep 19. Mol Pharm. 2018. PMID: 30180591 - De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update.
Lin E, Lin CH, Lane HY. Lin E, et al. J Chem Inf Model. 2022 Feb 28;62(4):761-774. doi: 10.1021/acs.jcim.1c01361. Epub 2022 Feb 7. J Chem Inf Model. 2022. PMID: 35128926 Review. - A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis.
Lin E, Mukherjee S, Kannan S. Lin E, et al. BMC Bioinformatics. 2020 Feb 21;21(1):64. doi: 10.1186/s12859-020-3401-5. BMC Bioinformatics. 2020. PMID: 32085701 Free PMC article.
Cited by
- Trends in application of advancing computational approaches in GPCR ligand discovery.
Zhu S, Wu M, Huang Z, An J. Zhu S, et al. Exp Biol Med (Maywood). 2021 May;246(9):1011-1024. doi: 10.1177/1535370221993422. Epub 2021 Feb 27. Exp Biol Med (Maywood). 2021. PMID: 33641446 Free PMC article. Review. - Molecular optimization by capturing chemist's intuition using deep neural networks.
He J, You H, Sandström E, Nittinger E, Bjerrum EJ, Tyrchan C, Czechtizky W, Engkvist O. He J, et al. J Cheminform. 2021 Mar 20;13(1):26. doi: 10.1186/s13321-021-00497-0. J Cheminform. 2021. PMID: 33743817 Free PMC article. - Deep Learning Applied to Ligand-Based De Novo Drug Design.
Palazzesi F, Pozzan A. Palazzesi F, et al. Methods Mol Biol. 2022;2390:273-299. doi: 10.1007/978-1-0716-1787-8_12. Methods Mol Biol. 2022. PMID: 34731474 Review. - Nanomedicine of tyrosine kinase inhibitors.
Smidova V, Michalek P, Goliasova Z, Eckschlager T, Hodek P, Adam V, Heger Z. Smidova V, et al. Theranostics. 2021 Jan 1;11(4):1546-1567. doi: 10.7150/thno.48662. eCollection 2021. Theranostics. 2021. PMID: 33408767 Free PMC article. Review. - The changing scenario of drug discovery using AI to deep learning: Recent advancement, success stories, collaborations, and challenges.
Chakraborty C, Bhattacharya M, Lee SS, Wen ZH, Lo YH. Chakraborty C, et al. Mol Ther Nucleic Acids. 2024 Aug 8;35(3):102295. doi: 10.1016/j.omtn.2024.102295. eCollection 2024 Sep 10. Mol Ther Nucleic Acids. 2024. PMID: 39257717 Free PMC article. Review.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources