A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack - PubMed (original) (raw)
A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack
L Orci et al. Cell. 1986.
Abstract
Isolated Golgi membranes incubated in the presence of ATP and a cytosolic protein fraction form a population of coated buds or vesicles from the Golgi cisternae. The coats do not have the characteristic hexagonal-pentagonal basketwork of clathrin, and do not react with anti-clathrin polyclonal antibody. The conditions that produce these apparently nonclathrin-coated buds also reconstitute protein transport between compartments of the Golgi stack. The membrane of the buds contains the glycoprotein in transit through these Golgi stacks (VSV-encoded G protein). This suggests that protein transport through the Golgi stack is mediated by a new type of coated vesicle that does not contain clathrin. The concentration of G protein in the coated buds reflects the local concentration of G protein in the cisternae, raising the possibility that the Golgi coated vesicles may be "bulk" membrane carriers.
Similar articles
- Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack.
Orci L, Malhotra V, Amherdt M, Serafini T, Rothman JE. Orci L, et al. Cell. 1989 Feb 10;56(3):357-68. doi: 10.1016/0092-8674(89)90239-0. Cell. 1989. PMID: 2536591 - Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane.
Griffiths G, Pfeiffer S, Simons K, Matlin K. Griffiths G, et al. J Cell Biol. 1985 Sep;101(3):949-64. doi: 10.1083/jcb.101.3.949. J Cell Biol. 1985. PMID: 2863275 Free PMC article. - Sequential intermediates in the pathway of intercompartmental transport in a cell-free system.
Balch WE, Glick BS, Rothman JE. Balch WE, et al. Cell. 1984 Dec;39(3 Pt 2):525-36. doi: 10.1016/0092-8674(84)90459-8. Cell. 1984. PMID: 6096009 - Enzymology of intracellular membrane fusion.
Rothman JE. Rothman JE. Klin Wochenschr. 1991 Feb 6;69(3):98-104. doi: 10.1007/BF01795952. Klin Wochenschr. 1991. PMID: 1849579 Review. - Traffic through the Golgi apparatus.
Pelham HR. Pelham HR. J Cell Biol. 2001 Dec 24;155(7):1099-101. doi: 10.1083/jcb.200110160. Epub 2001 Dec 24. J Cell Biol. 2001. PMID: 11756463 Free PMC article. Review.
Cited by
- Functional compartments of the yeast Golgi apparatus are defined by the sec7 mutation.
Franzusoff A, Schekman R. Franzusoff A, et al. EMBO J. 1989 Sep;8(9):2695-702. doi: 10.1002/j.1460-2075.1989.tb08410.x. EMBO J. 1989. PMID: 2684655 Free PMC article. - Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells.
Wandinger-Ness A, Bennett MK, Antony C, Simons K. Wandinger-Ness A, et al. J Cell Biol. 1990 Sep;111(3):987-1000. doi: 10.1083/jcb.111.3.987. J Cell Biol. 1990. PMID: 2202740 Free PMC article. - Immunoenzyme localization of cathepsins in the Golgi region of rat hepatocytes and renal tubule cells.
Yokota S, Nishimura Y, Kawabata T, Kato K. Yokota S, et al. Histochemistry. 1990;94(6):629-35. doi: 10.1007/BF00271990. Histochemistry. 1990. PMID: 2279958 - The assembly of AP-3 adaptor complex-containing clathrin-coated vesicles on synthetic liposomes.
Drake MT, Zhu Y, Kornfeld S. Drake MT, et al. Mol Biol Cell. 2000 Nov;11(11):3723-36. doi: 10.1091/mbc.11.11.3723. Mol Biol Cell. 2000. PMID: 11071902 Free PMC article. - ER/Golgi intermediates acquire Golgi enzymes by brefeldin A-sensitive retrograde transport in vitro.
Lin CC, Love HD, Gushue JN, Bergeron JJ, Ostermann J. Lin CC, et al. J Cell Biol. 1999 Dec 27;147(7):1457-72. doi: 10.1083/jcb.147.7.1457. J Cell Biol. 1999. PMID: 10613904 Free PMC article.