Quenching activity of carnosine derivatives towards reactive carbonyl species: Focus on α-(methylglyoxal) and β-(malondialdehyde) dicarbonyls - PubMed (original) (raw)
. 2017 Oct 21;492(3):487-492.
doi: 10.1016/j.bbrc.2017.08.069. Epub 2017 Aug 20.
Affiliations
- PMID: 28834691
- DOI: 10.1016/j.bbrc.2017.08.069
Quenching activity of carnosine derivatives towards reactive carbonyl species: Focus on α-(methylglyoxal) and β-(malondialdehyde) dicarbonyls
Giulio Vistoli et al. Biochem Biophys Res Commun. 2017.
Abstract
The study combines HPLC-based with MS-based competitive analyses to evaluate the quenching activity of a set of carnosine derivatives towards methylglyoxal (MGO) and malondialdehyde (MDA) chosen as representative of α- and β-dicarbonyls, respectively. The obtained results underline that these derivatives are moderately reactive towards MDA with which they form the corresponding N-propenal adduct via Michael addition. In contrast they proved a rather poor quenching activity towards MGO with which they can condense to give MOLD-like adducts through a concerted mechanism involving more quenchers molecules. Even though both quenching mechanisms involve the amino group in its neutral form, in silico studies revealed that the reported reactivity values depend on different stereo-electronic parameters which are reflected in the different observed quenching mechanism. Finally, the MGO quenching reactivity and the unselective (and unwanted) pyridoxal quenching are found to be influenced by the same parameters thus rationalizing the known difficulty in the design of potent and selective quenchers towards β-dicarbonyls.
Keywords: Canosine; Reactive carbonyl species; Sequestering agents.
Copyright © 2017 Elsevier Inc. All rights reserved.
Similar articles
- Reactivity, Selectivity, and Reaction Mechanisms of Aminoguanidine, Hydralazine, Pyridoxamine, and Carnosine as Sequestering Agents of Reactive Carbonyl Species: A Comparative Study.
Colzani M, De Maddis D, Casali G, Carini M, Vistoli G, Aldini G. Colzani M, et al. ChemMedChem. 2016 Aug 19;11(16):1778-89. doi: 10.1002/cmdc.201500552. Epub 2016 Feb 17. ChemMedChem. 2016. PMID: 26891408 - Computational approaches in the rational design of improved carbonyl quenchers: focus on histidine containing dipeptides.
Vistoli G, Colzani M, Mazzolari A, Maddis DD, Grazioso G, Pedretti A, Carini M, Aldini G. Vistoli G, et al. Future Med Chem. 2016 Sep;8(14):1721-37. doi: 10.4155/fmc-2016-0088. Epub 2016 Sep 1. Future Med Chem. 2016. PMID: 27584013 - Acrolein-sequestering ability of endogenous dipeptides: characterization of carnosine and homocarnosine/acrolein adducts by electrospray ionization tandem mass spectrometry.
Carini M, Aldini G, Beretta G, Arlandini E, Facino RM. Carini M, et al. J Mass Spectrom. 2003 Sep;38(9):996-1006. doi: 10.1002/jms.517. J Mass Spectrom. 2003. PMID: 14505328 - The Disposal of Reactive Carbonyl Species through Carnosine Conjugation: What We Know Now.
Gilardoni E, Baron G, Altomare A, Carini M, Aldini G, Regazzoni L. Gilardoni E, et al. Curr Med Chem. 2020;27(11):1726-1743. doi: 10.2174/0929867326666190624094813. Curr Med Chem. 2020. PMID: 31232232 Review. - Flavour chemistry of methylglyoxal and glyoxal.
Wang Y, Ho CT. Wang Y, et al. Chem Soc Rev. 2012 Jun 7;41(11):4140-9. doi: 10.1039/c2cs35025d. Epub 2012 Apr 16. Chem Soc Rev. 2012. PMID: 22508009 Review.
Cited by
- Non-enzymatic reaction of carnosine and glyceraldehyde-3-phosphate accompanies metabolic changes of the pentose phosphate pathway.
Oppermann H, Birkemeyer C, Meixensberger J, Gaunitz F. Oppermann H, et al. Cell Prolif. 2020 Feb;53(2):e12702. doi: 10.1111/cpr.12702. Epub 2019 Oct 19. Cell Prolif. 2020. PMID: 31628715 Free PMC article. - Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation.
Spaas J, Franssen WMA, Keytsman C, Blancquaert L, Vanmierlo T, Bogie J, Broux B, Hellings N, van Horssen J, Posa DK, Hoetker D, Baba SP, Derave W, Eijnde BO. Spaas J, et al. J Neuroinflammation. 2021 Nov 5;18(1):255. doi: 10.1186/s12974-021-02306-9. J Neuroinflammation. 2021. PMID: 34740381 Free PMC article. - Lipoxidation in cardiovascular diseases.
Gianazza E, Brioschi M, Fernandez AM, Banfi C. Gianazza E, et al. Redox Biol. 2019 May;23:101119. doi: 10.1016/j.redox.2019.101119. Epub 2019 Feb 25. Redox Biol. 2019. PMID: 30833142 Free PMC article. Review. - Urinary Carnosinase-1 Excretion is Associated with Urinary Carnosine Depletion and Risk of Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Cohort Study.
Rodriguez-Niño A, Pastene DO, Post A, Said MY, Gomes-Neto AW, Kieneker LM, Heiner-Fokkema MR, Esatbeyoglu T, Rimbach G, Schnuelle P, Yard BA, Bakker SJL. Rodriguez-Niño A, et al. Antioxidants (Basel). 2021 Jul 9;10(7):1102. doi: 10.3390/antiox10071102. Antioxidants (Basel). 2021. PMID: 34356335 Free PMC article. - Pyridoxamine ameliorates methylglyoxal-induced macrophage dysfunction to facilitate tissue repair in diabetic wounds.
Jiang M, Yakupu A, Guan H, Dong J, Liu Y, Song F, Tang J, Tian M, Niu Y, Lu S. Jiang M, et al. Int Wound J. 2022 Jan;19(1):52-63. doi: 10.1111/iwj.13597. Epub 2021 Mar 31. Int Wound J. 2022. PMID: 33792156 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources