Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life - PubMed (original) (raw)
. 2017 Nov;2(11):1533-1542.
doi: 10.1038/s41564-017-0012-7. Epub 2017 Sep 11.
Affiliations
- PMID: 28894102
- DOI: 10.1038/s41564-017-0012-7
Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life
Donovan H Parks et al. Nat Microbiol. 2017 Nov.
Erratum in
- Author Correction: Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life.
Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, Hugenholtz P, Tyson GW. Parks DH, et al. Nat Microbiol. 2018 Feb;3(2):253. doi: 10.1038/s41564-017-0083-5. Nat Microbiol. 2018. PMID: 29234139
Abstract
Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by >30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter.
Comment in
- Finding life's missing pieces.
Solden LM, Wrighton KC. Solden LM, et al. Nat Microbiol. 2017 Nov;2(11):1458-1459. doi: 10.1038/s41564-017-0048-8. Nat Microbiol. 2017. PMID: 29070823 No abstract available.
Similar articles
- Towards a balanced view of the bacterial tree of life.
Schulz F, Eloe-Fadrosh EA, Bowers RM, Jarett J, Nielsen T, Ivanova NN, Kyrpides NC, Woyke T. Schulz F, et al. Microbiome. 2017 Oct 17;5(1):140. doi: 10.1186/s40168-017-0360-9. Microbiome. 2017. PMID: 29041958 Free PMC article. - Insights into the phylogeny and coding potential of microbial dark matter.
Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T. Rinke C, et al. Nature. 2013 Jul 25;499(7459):431-7. doi: 10.1038/nature12352. Epub 2013 Jul 14. Nature. 2013. PMID: 23851394 - Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life.
Castelle CJ, Banfield JF. Castelle CJ, et al. Cell. 2018 Mar 8;172(6):1181-1197. doi: 10.1016/j.cell.2018.02.016. Cell. 2018. PMID: 29522741 Review. - Evaluating de Novo Assembly and Binning Strategies for Time Series Drinking Water Metagenomes.
Vosloo S, Huo L, Anderson CL, Dai Z, Sevillano M, Pinto A. Vosloo S, et al. Microbiol Spectr. 2021 Dec 22;9(3):e0143421. doi: 10.1128/Spectrum.01434-21. Epub 2021 Nov 3. Microbiol Spectr. 2021. PMID: 34730411 Free PMC article. - En route to a genome-based classification of Archaea and Bacteria?
Klenk HP, Göker M. Klenk HP, et al. Syst Appl Microbiol. 2010 Jun;33(4):175-82. doi: 10.1016/j.syapm.2010.03.003. Epub 2010 Apr 20. Syst Appl Microbiol. 2010. PMID: 20409658 Review.
Cited by
- Genome-resolved metaproteogenomic and nanosolid characterization of an inactive vent chimney densely colonized by enigmatic DPANN archaea.
Takamiya H, Kouduka M, Kato S, Suga H, Oura M, Yokoyama T, Suzuki M, Mori M, Kanai A, Suzuki Y. Takamiya H, et al. ISME J. 2024 Jan 8;18(1):wrae207. doi: 10.1093/ismejo/wrae207. ISME J. 2024. PMID: 39499858 Free PMC article. - Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences.
Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P, Thomas T, Wemheuer B. Wemheuer F, et al. Environ Microbiome. 2020 May 18;15(1):11. doi: 10.1186/s40793-020-00358-7. Environ Microbiome. 2020. PMID: 33902725 Free PMC article. - A distinct lineage of Caudovirales that encodes a deeply branching multi-subunit RNA polymerase.
Weinheimer AR, Aylward FO. Weinheimer AR, et al. Nat Commun. 2020 Sep 9;11(1):4506. doi: 10.1038/s41467-020-18281-3. Nat Commun. 2020. PMID: 32908149 Free PMC article. - A longitudinal census of the bacterial community in raw milk correlated with Staphylococcus aureus clinical mastitis infections in dairy cattle.
Park S, Jung D, Altshuler I, Kurban D, Dufour S, Ronholm J. Park S, et al. Anim Microbiome. 2022 Nov 24;4(1):59. doi: 10.1186/s42523-022-00211-x. Anim Microbiome. 2022. PMID: 36434660 Free PMC article. - 910 metagenome-assembled genomes from the phytobiomes of three urban-farmed leafy Asian greens.
Bandla A, Pavagadhi S, Sridhar Sudarshan A, Poh MCH, Swarup S. Bandla A, et al. Sci Data. 2020 Aug 25;7(1):278. doi: 10.1038/s41597-020-00617-9. Sci Data. 2020. PMID: 32843634 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases