Subunit composition and ATP site labeling of the coated vesicle proton-translocating adenosinetriphosphatase - PubMed (original) (raw)

. 1987 Oct 20;26(21):6632-8.

doi: 10.1021/bi00395a011.

Affiliations

Subunit composition and ATP site labeling of the coated vesicle proton-translocating adenosinetriphosphatase

H Arai et al. Biochemistry. 1987.

Abstract

The partially purified proton-translocating adenosinetriphosphatase [(H+)-ATPase] from clathrin-coated vesicles has been reported to contain eight polypeptides of molecular weights 15,000-116,000 [Xie, X.S., & Stone, D.K. (1986) J. Biol. Chem. 261, 2492-2495]. To determine whether these polypeptides form a single macromolecular complex, we have isolated three monoclonal antibodies which recognize the reconstitutively active (H+)-ATPase in the native, detergent-solubilized state. All three monoclonal antibodies precipitate the same set of polypeptides from either the partially purified enzyme or the detergent-solubilized coated vesicle membrane proteins. The immunoprecipitated polypeptides have molecular weights of 100,000, 73,000, 58,000, 40,000, 38,000, 34,000, 33,000, 19,000, and 17,000. These results thus indicate that this set of polypeptides forms a single macromolecular complex and suggest that they correspond to subunits of the coated vesicle (H+)-ATPase. To identify the ATP-hydrolytic subunit of the coated vesicle (H+)-ATPase, the purified enzyme was reacted with N-ethylmaleimide (NEM) and 7-chloro-4-nitro-2,1,3-benzoxadiazole (NBD-Cl), both of which inhibit activity in an ATP-protectable manner. Labeling was carried out by using [3H]NEM or [14C]NBD-Cl, and the specificity of the reaction was increased by prelabeling of the protein with the nonradioactive reagents in the presence of ATP and by taking advantage of the nucleotide specificity of protection. The principal polypeptide labeled by both [3H]NEM and [14C]NBD-Cl had a molecular weight of 73,000. In addition, this protein was the only polypeptide whose labeling was significantly reduced in the presence of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources