Sentiment analysis of political communication: combining a dictionary approach with crowdcoding - PubMed (original) (raw)
Sentiment analysis of political communication: combining a dictionary approach with crowdcoding
Martin Haselmayer et al. Qual Quant. 2017.
Abstract
Sentiment is important in studies of news values, public opinion, negative campaigning or political polarization and an explosive expansion of digital textual data and fast progress in automated text analysis provide vast opportunities for innovative social science research. Unfortunately, tools currently available for automated sentiment analysis are mostly restricted to English texts and require considerable contextual adaption to produce valid results. We present a procedure for collecting fine-grained sentiment scores through crowdcoding to build a negative sentiment dictionary in a language and for a domain of choice. The dictionary enables the analysis of large text corpora that resource-intensive hand-coding struggles to cope with. We calculate the tonality of sentences from dictionary words and we validate these estimates with results from manual coding. The results show that the crowdbased dictionary provides efficient and valid measurement of sentiment. Empirical examples illustrate its use by analyzing the tonality of party statements and media reports.
Keywords: Crowdcoding; Media negativity; Negative campaigning; Political communication; Sentiment analysis.
Figures
Fig. 1
Creating a sentiment dictionary_. Notes_ i…number of sentences, j…number of coders, k…number of dictionary words, l…number of tonality ratings, n…number of sentences containing a rated word
Fig. 2
Histogram of tonality scores of dictionary words (n = 5001)
Fig. 3
Comparing expert scores and crowdscores. Note: Line indicates linear regression of crowdscores on expert scores
Fig. 4
Comparing expert scores, crowdscores and automated, dictionary-based scores. Note: Lines indicate linear regression of dictionary-based scores on expert scores (grey line) and crowdscores (black line)
Fig. 5
OLS regression coefficients (with 95 %-confidence intervals)
Fig. 6
Mean tonality of campaign coverage on parties and others
Fig. 7
CrowdFlower Markup Language for the coding of sentence tonality
Fig. 8
Screenshot of the CrowdFlower coding interface
Similar articles
- Sentiment Classification of News Text Data Using Intelligent Model.
Zhang S. Zhang S. Front Psychol. 2021 Sep 28;12:758967. doi: 10.3389/fpsyg.2021.758967. eCollection 2021. Front Psychol. 2021. PMID: 34650498 Free PMC article. - Examining Sentiment in Complex Texts. A Comparison of Different Computational Approaches.
Munnes S, Harsch C, Knobloch M, Vogel JS, Hipp L, Schilling E. Munnes S, et al. Front Big Data. 2022 May 4;5:886362. doi: 10.3389/fdata.2022.886362. eCollection 2022. Front Big Data. 2022. PMID: 35600329 Free PMC article. - Detecting Sentiment toward Emerging Infectious Diseases on Social Media: A Validity Evaluation of Dictionary-Based Sentiment Analysis.
Lee S, Ma S, Meng J, Zhuang J, Peng TQ. Lee S, et al. Int J Environ Res Public Health. 2022 Jun 1;19(11):6759. doi: 10.3390/ijerph19116759. Int J Environ Res Public Health. 2022. PMID: 35682341 Free PMC article. - A review on sentiment analysis and emotion detection from text.
Nandwani P, Verma R. Nandwani P, et al. Soc Netw Anal Min. 2021;11(1):81. doi: 10.1007/s13278-021-00776-6. Epub 2021 Aug 28. Soc Netw Anal Min. 2021. PMID: 34484462 Free PMC article. Review. - Sentiment Analysis of Health Care Tweets: Review of the Methods Used.
Gohil S, Vuik S, Darzi A. Gohil S, et al. JMIR Public Health Surveill. 2018 Apr 23;4(2):e43. doi: 10.2196/publichealth.5789. JMIR Public Health Surveill. 2018. PMID: 29685871 Free PMC article. Review.
Cited by
- A class for itself? On the worldviews of the new tech elite.
Brockmann H, Drews W, Torpey J. Brockmann H, et al. PLoS One. 2021 Jan 20;16(1):e0244071. doi: 10.1371/journal.pone.0244071. eCollection 2021. PLoS One. 2021. PMID: 33471828 Free PMC article. - Systematic Delineation of Media Polarity on COVID-19 Vaccines in Africa: Computational Linguistic Modeling Study.
Gbashi S, Adebo OA, Doorsamy W, Njobeh PB. Gbashi S, et al. JMIR Med Inform. 2021 Mar 16;9(3):e22916. doi: 10.2196/22916. JMIR Med Inform. 2021. PMID: 33667172 Free PMC article. - Tone in politics is not systematically related to macro trends, ideology, or experience.
Pipal C, Bakker BN, Schumacher G, van der Velden MACG. Pipal C, et al. Sci Rep. 2024 Feb 8;14(1):3241. doi: 10.1038/s41598-023-49618-9. Sci Rep. 2024. PMID: 38331940 Free PMC article. - Content Analysis by the Crowd: Assessing the Usability of Crowdsourcing for Coding Latent Constructs.
Lind F, Gruber M, Boomgaarden HG. Lind F, et al. Commun Methods Meas. 2017 Jul 3;11(3):191-209. doi: 10.1080/19312458.2017.1317338. Commun Methods Meas. 2017. PMID: 29118893 Free PMC article. - Using machine learning analysis to interpret the relationship between music emotion and lyric features.
Xu L, Sun Z, Wen X, Huang Z, Chao CJ, Xu L. Xu L, et al. PeerJ Comput Sci. 2021 Nov 15;7:e785. doi: 10.7717/peerj-cs.785. eCollection 2021. PeerJ Comput Sci. 2021. PMID: 34901433 Free PMC article.
References
- Alonso O, Baeza-Yates R. Design and implementation of relevance assessments Using Crowdsourcing. In: Clough P, Foley C, Gurrin C, Jones G, Kraaj W, Lee H, Mudoch V, editors. Advances in Information Retrieval. Berlin: Springer; 2011. pp. 153–164.
- Baumeister RA, Bratlavsky E, Finkenauer C. Bad is stronger than good. Rev. Gen. Psychol. 2001;5(4):323–370. doi: 10.1037/1089-2680.5.4.323. - DOI
- Baumgartner FR, Jones BD. Agendas and instability in American politics. American politics and political economy series. Chicago: University of Chicago Press; 1993.
- Benikova, D., Biemann, C., Reznicek, M.: NoSta-D Named Entity Annotation for German: Guidelines and Dataset. Proceedings of Language Resources and Evaluation Conference (LREC) 2014, 26–31 May, Reykjavik, Iceland (2014)
- Benoit K, Conway D, Lauderdale B, Laver M, Mikhaylov S. Crowd-sourced text analysis: Reproducible and agile production of political data. Am. Polit. Sci. Rev. 2016;110(2):278–295. doi: 10.1017/S0003055416000058. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources