"No High Like a Brownie High": A Content Analysis of Edible Marijuana Tweets - PubMed (original) (raw)
. 2018 May;32(4):880-886.
doi: 10.1177/0890117116686574. Epub 2017 Jan 22.
Affiliations
- PMID: 29214836
- DOI: 10.1177/0890117116686574
"No High Like a Brownie High": A Content Analysis of Edible Marijuana Tweets
Patricia A Cavazos-Rehg et al. Am J Health Promot. 2018 May.
Abstract
Purpose: To investigate tweets about marijuana edibles for surveillance into the content of edibles-related tweets among individuals socially networking about this topic on Twitter.
Design: Cross-sectional analysis of tweets containing edible marijuana-related key words during 1 month.
Setting: Twitter.
Participants: Tweets sent during January 1 to 31, 2015.
Methods: A random sample of 5000 tweets containing edibles-related key words was coded for sentiment (positive, negative, and neutral) by crowdsourced workers. Tweets normalizing or promoting edibles use were further analyzed, and demographic characteristics of the Twitter handles sending these tweets were inferred.
Results: Of the 5000 tweets, 4166 (83%) were about marijuana edibles, and of those 75% (3134 of 4166) normalized or encouraged edibles use. Nearly half (48%, 1509 of 3134) of the tweets normalizing edibles mentioned wanting or planning to consume, currently consuming, or recently consuming edibles, and 12% (378 of 3134) described the intense or long-lasting effects following use. Individuals whose tweets promoted/encouraged edibles use were more likely to be young (between 17 and 24 years old) and of a racial/ethnic minority (52% black; 12% Hispanic) when compared to the Twitter average.
Conclusion: Tweets that normalize edibles use have the potential to increase their popularity. The prevalence of tweets about edibles' intense high could have implications for tailoring prevention messages that could be important for youth and young adult minorities who were inferred to be disproportionately socially networking about edibles on Twitter.
Keywords: marijuana; social media; twitter.
Similar articles
- Characterizing the followers and tweets of a marijuana-focused Twitter handle.
Cavazos-Rehg P, Krauss M, Grucza R, Bierut L. Cavazos-Rehg P, et al. J Med Internet Res. 2014 Jun 27;16(6):e157. doi: 10.2196/jmir.3247. J Med Internet Res. 2014. PMID: 24974893 Free PMC article. - "Get drunk. Smoke weed. Have fun.": A Content Analysis of Tweets About Marijuana and Alcohol.
Krauss MJ, Grucza RA, Bierut LJ, Cavazos-Rehg PA. Krauss MJ, et al. Am J Health Promot. 2017 May;31(3):200-208. doi: 10.4278/ajhp.150205-QUAL-708. Epub 2016 Nov 17. Am J Health Promot. 2017. PMID: 26559715 Free PMC article. - "Those edibles hit hard": Exploration of Twitter data on cannabis edibles in the U.S.
Lamy FR, Daniulaityte R, Sheth A, Nahhas RW, Martins SS, Boyer EW, Carlson RG. Lamy FR, et al. Drug Alcohol Depend. 2016 Jul 1;164:64-70. doi: 10.1016/j.drugalcdep.2016.04.029. Epub 2016 Apr 26. Drug Alcohol Depend. 2016. PMID: 27185160 Free PMC article. - Sentiment Analysis of Health Care Tweets: Review of the Methods Used.
Gohil S, Vuik S, Darzi A. Gohil S, et al. JMIR Public Health Surveill. 2018 Apr 23;4(2):e43. doi: 10.2196/publichealth.5789. JMIR Public Health Surveill. 2018. PMID: 29685871 Free PMC article. Review. - Artificial Intelligence and Radiology: A Social Media Perspective.
Goldberg JE, Rosenkrantz AB. Goldberg JE, et al. Curr Probl Diagn Radiol. 2019 Jul-Aug;48(4):308-311. doi: 10.1067/j.cpradiol.2018.07.005. Epub 2018 Jul 23. Curr Probl Diagn Radiol. 2019. PMID: 30143386 Review.
Cited by
- Methods and Annotated Data Sets Used to Predict the Gender and Age of Twitter Users: Scoping Review.
O'Connor K, Golder S, Weissenbacher D, Klein AZ, Magge A, Gonzalez-Hernandez G. O'Connor K, et al. J Med Internet Res. 2024 Mar 15;26:e47923. doi: 10.2196/47923. J Med Internet Res. 2024. PMID: 38488839 Free PMC article. Review. - Surveillance of communicable diseases using social media: A systematic review.
Pilipiec P, Samsten I, Bota A. Pilipiec P, et al. PLoS One. 2023 Feb 24;18(2):e0282101. doi: 10.1371/journal.pone.0282101. eCollection 2023. PLoS One. 2023. PMID: 36827297 Free PMC article. - #TurntTrending: a systematic review of substance use portrayals on social media platforms.
Rutherford BN, Lim CCW, Johnson B, Cheng B, Chung J, Huang S, Sun T, Leung J, Stjepanović D, Chan GCK. Rutherford BN, et al. Addiction. 2023 Feb;118(2):206-217. doi: 10.1111/add.16020. Epub 2022 Sep 8. Addiction. 2023. PMID: 36075258 Free PMC article. Review. - Methods to Establish Race or Ethnicity of Twitter Users: Scoping Review.
Golder S, Stevens R, O'Connor K, James R, Gonzalez-Hernandez G. Golder S, et al. J Med Internet Res. 2022 Apr 29;24(4):e35788. doi: 10.2196/35788. J Med Internet Res. 2022. PMID: 35486433 Free PMC article. Review. - Using Machine Learning for Pharmacovigilance: A Systematic Review.
Pilipiec P, Liwicki M, Bota A. Pilipiec P, et al. Pharmaceutics. 2022 Jan 23;14(2):266. doi: 10.3390/pharmaceutics14020266. Pharmaceutics. 2022. PMID: 35213998 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical