Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis - PubMed (original) (raw)
. 2018 Mar;18(3):318-327.
doi: 10.1016/S1473-3099(17)30753-3. Epub 2017 Dec 21.
Elena Carrara 2, Alessia Savoldi 3, Stephan Harbarth 4, Marc Mendelson 5, Dominique L Monnet 6, Céline Pulcini 7, Gunnar Kahlmeter 8, Jan Kluytmans 9, Yehuda Carmeli 10, Marc Ouellette 11, Kevin Outterson 12, Jean Patel 13, Marco Cavaleri 14, Edward M Cox 15, Chris R Houchens 16, M Lindsay Grayson 17, Paul Hansen 18, Nalini Singh 19, Ursula Theuretzbacher 20, Nicola Magrini 21; WHO Pathogens Priority List Working Group
Collaborators, Affiliations
- PMID: 29276051
- DOI: 10.1016/S1473-3099(17)30753-3
Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis
Evelina Tacconelli et al. Lancet Infect Dis. 2018 Mar.
Abstract
Background: The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs.
Methods: We used a multicriteria decision analysis method to prioritise antibiotic-resistant bacteria; this method involved the identification of relevant criteria to assess priority against which each antibiotic-resistant bacterium was rated. The final priority ranking of the antibiotic-resistant bacteria was established after a preference-based survey was used to obtain expert weighting of criteria.
Findings: We selected 20 bacterial species with 25 patterns of acquired resistance and ten criteria to assess priority: mortality, health-care burden, community burden, prevalence of resistance, 10-year trend of resistance, transmissibility, preventability in the community setting, preventability in the health-care setting, treatability, and pipeline. We stratified the priority list into three tiers (critical, high, and medium priority), using the 33rd percentile of the bacterium's total scores as the cutoff. Critical-priority bacteria included carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa, and carbapenem-resistant and third-generation cephalosporin-resistant Enterobacteriaceae. The highest ranked Gram-positive bacteria (high priority) were vancomycin-resistant Enterococcus faecium and meticillin-resistant Staphylococcus aureus. Of the bacteria typically responsible for community-acquired infections, clarithromycin-resistant Helicobacter pylori, and fluoroquinolone-resistant Campylobacter spp, Neisseria gonorrhoeae, and Salmonella typhi were included in the high-priority tier.
Interpretation: Future development strategies should focus on antibiotics that are active against multidrug-resistant tuberculosis and Gram-negative bacteria. The global strategy should include antibiotic-resistant bacteria responsible for community-acquired infections such as Salmonella spp, Campylobacter spp, N gonorrhoeae, and H pylori.
Funding: World Health Organization.
Copyright © 2018 Elsevier Ltd. All rights reserved.
Comment in
- A crucial list of pathogens.
Tillotson G. Tillotson G. Lancet Infect Dis. 2018 Mar;18(3):234-236. doi: 10.1016/S1473-3099(17)30754-5. Epub 2017 Dec 21. Lancet Infect Dis. 2018. PMID: 29276050 No abstract available. - Achieving Helicobacter pylori eradication in the primary treatment requires a deep integration of personalization and standardization.
Zhong Z, Zhan B, Xu B, Gao H. Zhong Z, et al. Helicobacter. 2022 Oct;27(5):e12916. doi: 10.1111/hel.12916. Epub 2022 Aug 8. Helicobacter. 2022. PMID: 35939537 No abstract available.
Similar articles
- A global priority list of the TOp TEn resistant Microorganisms (TOTEM) study at intensive care: a prioritization exercise based on multi-criteria decision analysis.
Rello J, Kalwaje Eshwara V, Lagunes L, Alves J, Wunderink RG, Conway-Morris A, Rojas JN, Alp E, Zhang Z. Rello J, et al. Eur J Clin Microbiol Infect Dis. 2019 Feb;38(2):319-323. doi: 10.1007/s10096-018-3428-y. Epub 2018 Nov 13. Eur J Clin Microbiol Infect Dis. 2019. PMID: 30426331 - Gross national income and antibiotic resistance in invasive isolates: analysis of the top-ranked antibiotic-resistant bacteria on the 2017 WHO priority list.
Savoldi A, Carrara E, Gladstone BP, Azzini AM, Göpel S, Tacconelli E. Savoldi A, et al. J Antimicrob Chemother. 2019 Dec 1;74(12):3619-3625. doi: 10.1093/jac/dkz381. J Antimicrob Chemother. 2019. PMID: 31730162 - [Analysis of distribution and drug resistance of pathogens from the wounds of 1 310 thermal burn patients].
Zhang C, Gong YL, Luo XQ, Liu MX, Peng YZ. Zhang C, et al. Zhonghua Shao Shang Za Zhi. 2018 Nov 20;34(11):802-808. doi: 10.3760/cma.j.issn.1009-2587.2018.11.016. Zhonghua Shao Shang Za Zhi. 2018. PMID: 30481922 Chinese. - The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline.
Frost I, Sati H, Garcia-Vello P, Hasso-Agopsowicz M, Lienhardt C, Gigante V, Beyer P. Frost I, et al. Lancet Microbe. 2023 Feb;4(2):e113-e125. doi: 10.1016/S2666-5247(22)00303-2. Epub 2022 Dec 14. Lancet Microbe. 2023. PMID: 36528040 Free PMC article. Review. - What Is New in the Anti-Pseudomonas aeruginosa Clinical Development Pipeline Since the 2017 WHO Alert?
Reig S, Le Gouellec A, Bleves S. Reig S, et al. Front Cell Infect Microbiol. 2022 Jul 8;12:909731. doi: 10.3389/fcimb.2022.909731. eCollection 2022. Front Cell Infect Microbiol. 2022. PMID: 35880080 Free PMC article. Review.
Cited by
- Proteomic approach to identify host cell attachment proteins provides protective Pseudomonas aeruginosa vaccine antigen FtsZ.
Jurado-Martín I, Tomás-Cortázar J, Hou Y, Sainz-Mejías M, Mysior MM, Sadonès O, Huebner J, Romero-Saavedra F, Simpson JC, Baugh JA, McClean S. Jurado-Martín I, et al. NPJ Vaccines. 2024 Oct 28;9(1):204. doi: 10.1038/s41541-024-00994-x. NPJ Vaccines. 2024. PMID: 39468053 Free PMC article. - The Quorum-Sensing Inhibitor Furanone C-30 Rapidly Loses Its Tobramycin-Potentiating Activity against Pseudomonas aeruginosa Biofilms during Experimental Evolution.
Bové M, Bao X, Sass A, Crabbé A, Coenye T. Bové M, et al. Antimicrob Agents Chemother. 2021 Jun 17;65(7):e0041321. doi: 10.1128/AAC.00413-21. Epub 2021 Jun 17. Antimicrob Agents Chemother. 2021. PMID: 33903100 Free PMC article. - Rapid Antimicrobial Susceptibility Testing on Clinical Urine Samples by Video-Based Object Scattering Intensity Detection.
Zhang F, Jiang J, McBride M, Zhou X, Yang Y, Mo M, Peterman J, Grys T, Haydel SE, Tao N, Wang S. Zhang F, et al. Anal Chem. 2021 May 11;93(18):7011-7021. doi: 10.1021/acs.analchem.1c00019. Epub 2021 Apr 28. Anal Chem. 2021. PMID: 33909404 Free PMC article. - Type IV Coupling Proteins as Potential Targets to Control the Dissemination of Antibiotic Resistance.
Álvarez-Rodríguez I, Arana L, Ugarte-Uribe B, Gómez-Rubio E, Martín-Santamaría S, Garbisu C, Alkorta I. Álvarez-Rodríguez I, et al. Front Mol Biosci. 2020 Aug 12;7:201. doi: 10.3389/fmolb.2020.00201. eCollection 2020. Front Mol Biosci. 2020. PMID: 32903459 Free PMC article. Review. - Enhanced fatty acid biosynthesis by Sigma28 in stringent responses contributes to multidrug resistance and biofilm formation in Helicobacter pylori.
Xue J, Li S, Wang L, Zhao Y, Zhang L, Zheng Y, Zhang W, Chen Z, Jiang T, Sun Y. Xue J, et al. Antimicrob Agents Chemother. 2024 Sep 4;68(9):e0085024. doi: 10.1128/aac.00850-24. Epub 2024 Jul 24. Antimicrob Agents Chemother. 2024. PMID: 39046242
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous