High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies - PubMed (original) (raw)
. 2018 Feb 1;69(3):517-532.e11.
doi: 10.1016/j.molcel.2017.12.020. Epub 2018 Jan 25.
Wade H Dunham 1, Seo Jung Hong 1, James D R Knight 1, Mikhail Bashkurov 1, Ginny I Chen 2, Halil Bagci 3, Bhavisha Rathod 1, Graham MacLeod 4, Simon W M Eng 5, Stéphane Angers 6, Quaid Morris 7, Marc Fabian 8, Jean-François Côté 9, Anne-Claude Gingras 10
Affiliations
- PMID: 29395067
- DOI: 10.1016/j.molcel.2017.12.020
Free article
High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies
Ji-Young Youn et al. Mol Cell. 2018.
Free article
Abstract
mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs.
Keywords: BioID; PP4 complex; PRRC2C; UBAP2L; mass spectrometry; membraneless organelle; processing body; proximity-based labeling; ribonucleoprotein complex; stress granule.
Copyright © 2017 Elsevier Inc. All rights reserved.
Comment in
- Guilty by Association: Mapping Out the Molecular Sociology of Droplet Compartments.
Alberti S. Alberti S. Mol Cell. 2018 Feb 1;69(3):349-351. doi: 10.1016/j.molcel.2018.01.020. Mol Cell. 2018. PMID: 29395058
Similar articles
- UBAP2L Forms Distinct Cores that Act in Nucleating Stress Granules Upstream of G3BP1.
Cirillo L, Cieren A, Barbieri S, Khong A, Schwager F, Parker R, Gotta M. Cirillo L, et al. Curr Biol. 2020 Feb 24;30(4):698-707.e6. doi: 10.1016/j.cub.2019.12.020. Epub 2020 Jan 16. Curr Biol. 2020. PMID: 31956030 - Stress granules regulate stress-induced paraspeckle assembly.
An H, Tan JT, Shelkovnikova TA. An H, et al. J Cell Biol. 2019 Dec 2;218(12):4127-4140. doi: 10.1083/jcb.201904098. Epub 2019 Oct 21. J Cell Biol. 2019. PMID: 31636118 Free PMC article. - Fission Yeast Puf2, a Pumilio and FBF Family RNA-Binding Protein, Links Stress Granules to Processing Bodies.
Hsiao WY, Wang YT, Wang SW. Hsiao WY, et al. Mol Cell Biol. 2020 Apr 13;40(9):e00589-19. doi: 10.1128/MCB.00589-19. Print 2020 Apr 13. Mol Cell Biol. 2020. PMID: 32071154 Free PMC article. - Relation Between Stress Granules and Cytoplasmic Protein Aggregates Linked to Neurodegenerative Diseases.
Dobra I, Pankivskyi S, Samsonova A, Pastre D, Hamon L. Dobra I, et al. Curr Neurol Neurosci Rep. 2018 Nov 8;18(12):107. doi: 10.1007/s11910-018-0914-7. Curr Neurol Neurosci Rep. 2018. PMID: 30406848 Review. - Stress granules: the Tao of RNA triage.
Anderson P, Kedersha N. Anderson P, et al. Trends Biochem Sci. 2008 Mar;33(3):141-50. doi: 10.1016/j.tibs.2007.12.003. Trends Biochem Sci. 2008. PMID: 18291657 Review.
Cited by
- Functional Roles of Poly(ADP-Ribose) in Stress Granule Formation and Dynamics.
Jin X, Cao X, Liu S, Liu B. Jin X, et al. Front Cell Dev Biol. 2021 Apr 26;9:671780. doi: 10.3389/fcell.2021.671780. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 33981709 Free PMC article. Review. - Profiling stress-triggered RNA condensation with photocatalytic proximity labeling.
Ren Z, Tang W, Peng L, Zou P. Ren Z, et al. Nat Commun. 2023 Nov 15;14(1):7390. doi: 10.1038/s41467-023-43194-2. Nat Commun. 2023. PMID: 37968266 Free PMC article. - Protein Databases Related to Liquid-Liquid Phase Separation.
Li Q, Wang X, Dou Z, Yang W, Huang B, Lou J, Zhang Z. Li Q, et al. Int J Mol Sci. 2020 Sep 16;21(18):6796. doi: 10.3390/ijms21186796. Int J Mol Sci. 2020. PMID: 32947964 Free PMC article. Review. - System-wide analysis of RNA and protein subcellular localization dynamics.
Villanueva E, Smith T, Pizzinga M, Elzek M, Queiroz RML, Harvey RF, Breckels LM, Crook OM, Monti M, Dezi V, Willis AE, Lilley KS. Villanueva E, et al. Nat Methods. 2024 Jan;21(1):60-71. doi: 10.1038/s41592-023-02101-9. Epub 2023 Nov 30. Nat Methods. 2024. PMID: 38036857 Free PMC article. - Who's In and Who's Out-Compositional Control of Biomolecular Condensates.
Ditlev JA, Case LB, Rosen MK. Ditlev JA, et al. J Mol Biol. 2018 Nov 2;430(23):4666-4684. doi: 10.1016/j.jmb.2018.08.003. Epub 2018 Aug 9. J Mol Biol. 2018. PMID: 30099028 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous