Analysis of the Escherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes - PubMed (original) (raw)
Comparative Study
. 1988 Oct 30;70(2):363-76.
doi: 10.1016/0378-1119(88)90208-9.
Affiliations
- PMID: 2975249
- DOI: 10.1016/0378-1119(88)90208-9
Comparative Study
Analysis of the Escherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes
T Romeo et al. Gene. 1988.
Abstract
The nucleotide sequences of the Escherichia coli genome between the glycogen biosynthetic genes glgB and glgC, and 1170 bp of DNA which follows glgA have been determined. The region between glgB and glgC contains an open reading frame (ORF) of 1521 bp which we call glgX. This ORF is capable of coding for an Mr 56,684 protein. The deduced amino acid (aa) sequence for the putative product shows significant similarity to the E. coli glycogen branching enzyme, and to several different glucan hydrolases and transferases. The regions of sequence similarity include residues which have been reported to be involved in substrate binding and catalysis by taka-amylase. This suggests that the proposed product may catalyze hydrolysis or glycosyl-transferase reactions. The cloned region which follows glgA contains an incomplete ORF (1149 bp), glgY, which appears to encode 383 aa of the N terminus of glycogen phosphorylase, based upon sequence similarity with the enzyme from rabbit muscle (47% identical aa residues) and with maltodextrin phosphorylase from E. coli (37% identical aa residues). Results suggest that neither ORF is required for glycogen biosynthesis. The localization of glycogen biosynthetic and degradative genes together in a cluster may facilitate the regulation of these systems in vivo.
Similar articles
- Nucleotide sequence of the Synechococcus sp. PCC7942 branching enzyme gene (glgB): expression in Bacillus subtilis.
Kiel JA, Boels JM, Beldman G, Venema G. Kiel JA, et al. Gene. 1990 Apr 30;89(1):77-84. doi: 10.1016/0378-1119(90)90208-9. Gene. 1990. PMID: 2142668 - Escherichia coli glycogen genes are organized in a single glgBXCAP transcriptional unit possessing an alternative suboperonic promoter within glgC that directs glgAP expression.
Montero M, Almagro G, Eydallin G, Viale AM, Muñoz FJ, Bahaji A, Li J, Rahimpour M, Baroja-Fernández E, Pozueta-Romero J. Montero M, et al. Biochem J. 2011 Jan 1;433(1):107-17. doi: 10.1042/BJ20101186. Biochem J. 2011. PMID: 21029047 - Cloning and characterization of the glycogen branching enzyme gene existing in tandem with the glycogen debranching enzyme from Pectobacterium chrysanthemi PY35.
Lim WJ, Park SR, Kim MK, An CL, Yun HJ, Hong SY, Kim EJ, Shin EC, Lee SW, Lim YP, Yun HD. Lim WJ, et al. Biochem Biophys Res Commun. 2003 Jan 3;300(1):93-101. doi: 10.1016/s0006-291x(02)02763-8. Biochem Biophys Res Commun. 2003. PMID: 12480526 - Physiology, biochemistry and genetics of bacterial glycogen synthesis.
Preiss J, Romeo T. Preiss J, et al. Adv Microb Physiol. 1989;30:183-238. doi: 10.1016/s0065-2911(08)60113-7. Adv Microb Physiol. 1989. PMID: 2700539 Review. No abstract available.
Cited by
- Regulatory Role of GgaR (YegW) for Glycogen Accumulation in Escherichia coli K-12.
Saito S, Kobayashi I, Hoshina M, Uenaka E, Sakurai A, Imamura S, Shimada T. Saito S, et al. Microorganisms. 2024 Jan 5;12(1):115. doi: 10.3390/microorganisms12010115. Microorganisms. 2024. PMID: 38257942 Free PMC article. - Glycogen phosphorylase, the product of the glgP Gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli.
Alonso-Casajús N, Dauvillée D, Viale AM, Muñoz FJ, Baroja-Fernández E, Morán-Zorzano MT, Eydallin G, Ball S, Pozueta-Romero J. Alonso-Casajús N, et al. J Bacteriol. 2006 Jul;188(14):5266-72. doi: 10.1128/JB.01566-05. J Bacteriol. 2006. PMID: 16816199 Free PMC article. - Nucleotide sequence of a cDNA encoding starch-branching enzyme, or q-enzyme I, from rice endosperm.
Nakamura Y, Yamanouchi H. Nakamura Y, et al. Plant Physiol. 1992 Jul;99(3):1265-6. doi: 10.1104/pp.99.3.1265. Plant Physiol. 1992. PMID: 16669000 Free PMC article. No abstract available. - Pseudomonas aeruginosa transcriptome adaptations from colonization to biofilm infection of skin wounds.
D'Arpa P, Karna SLR, Chen T, Leung KP. D'Arpa P, et al. Sci Rep. 2021 Oct 19;11(1):20632. doi: 10.1038/s41598-021-00073-4. Sci Rep. 2021. PMID: 34667187 Free PMC article. - Analysis of essential histidine residues of maize branching enzymes by chemical modification and site-directed mutagenesis.
Funane K, Libessart N, Stewart D, Michishita T, Preiss J. Funane K, et al. J Protein Chem. 1998 Oct;17(7):579-90. doi: 10.1007/BF02780959. J Protein Chem. 1998. PMID: 9853672
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous