Comparison of tracheal reconstruction with allograft, fresh xenograft and artificial trachea scaffold in a rabbit model - PubMed (original) (raw)
Comparative Study
. 2018 Sep;21(3):325-331.
doi: 10.1007/s10047-018-1045-2. Epub 2018 May 12.
Affiliations
- PMID: 29752586
- DOI: 10.1007/s10047-018-1045-2
Comparative Study
Comparison of tracheal reconstruction with allograft, fresh xenograft and artificial trachea scaffold in a rabbit model
Jae Yeon Lee et al. J Artif Organs. 2018 Sep.
Abstract
This study evaluated the possibility of tracheal reconstruction with allograft, pig-to-rabbit fresh xenograft or use of a tissue-engineered trachea, and compared acute rejection of three different transplanted tracheal segments in rabbits. Eighteen healthy New Zealand White rabbits weighing 2.5-3.1 kg were transplanted with three different types of trachea substitutes. Two rabbits and two alpha 1, 3-galactosyltransferase gene-knockout pigs weighing 5 kg were used as donors. The rabbits were divided into three groups: an allograft control group consisting of rabbit-to-rabbit allotransplantation animals (n = 6), a fresh xenograft group consisting of pig-to-rabbit xenotransplantation animals (n = 6), and an artificial trachea scaffold group (n = 6). All animals were monitored for 4 weeks for anastomotic complications or infection. The recipients were sacrificed at 28 days after surgery and the grafts were evaluated. On bronchoscopy, all of the fresh xenograft group animals showed ischemic and necrotic changes at 28 days after trachea replacement. The allograft rabbits and the tissue-engineered rabbits showed mild mucosal granulation. The levels of interleukin-2 and interferon-γ in the fresh xenograft group were higher than in other groups. Histopathologic examination of the graft in the fresh xenograft rabbits showed ischemic and necrotic changes, including a loss of epithelium, mucosal granulation, and necrosis of cartilaginous rings. The pig-to-rabbit xenografts showed more severe acute rejection within a month than the rabbits with allograft or artificial trachea-mimetic graft. In addition, the artificial tracheal scaffold used in the present experiment is superior to fresh xenograft and may facilitate tracheal reconstruction in the clinical setting.
Keywords: Allograft; Artificial trachea-mimetic graft; Rabbit; Xenotransplantation.
Similar articles
- Tissue-engineered tracheal reconstruction using chondrocyte seeded on a porcine cartilage-derived substance scaffold.
Shin YS, Lee BH, Choi JW, Min BH, Chang JW, Yang SS, Kim CH. Shin YS, et al. Int J Pediatr Otorhinolaryngol. 2014 Jan;78(1):32-8. doi: 10.1016/j.ijporl.2013.10.014. Epub 2013 Oct 30. Int J Pediatr Otorhinolaryngol. 2014. PMID: 24280440 - Transplantation of the decellularized tracheal allograft in animal model (rabbit).
Ershadi R, Rahim M, Jahany S, Rakei S. Ershadi R, et al. Asian J Surg. 2018 Jul;41(4):328-332. doi: 10.1016/j.asjsur.2017.02.007. Epub 2017 Mar 27. Asian J Surg. 2018. PMID: 28359676 - [MORPHOLOGY AND PATHOLOGICAL CHANGES OF POLYTETRAFLUOROETHYLENE ARTIFICIAL TRACHEAL TRANSPLANTATION].
Li G, Zhang J, Cui X, Zhao Y, Cao P, Lu L, Li X. Li G, et al. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014 Jul;28(7):879-84. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014. PMID: 26462355 Chinese. - Current concepts in tracheal reconstruction.
Rich JT, Gullane PJ. Rich JT, et al. Curr Opin Otolaryngol Head Neck Surg. 2012 Aug;20(4):246-53. doi: 10.1097/MOO.0b013e328355580e. Curr Opin Otolaryngol Head Neck Surg. 2012. PMID: 22894992 Review. - Current Solutions for Long-Segment Tracheal Reconstruction.
Abouarab AA, Elsayed HH, Elkhayat H, Mostafa A, Cleveland DC, Nori AE. Abouarab AA, et al. Ann Thorac Cardiovasc Surg. 2017 Apr 20;23(2):66-75. doi: 10.5761/atcs.ra.16-00251. Epub 2017 Feb 23. Ann Thorac Cardiovasc Surg. 2017. PMID: 28228614 Free PMC article. Review.
Cited by
- Journal of Artificial Organs 2018: the year in review : Journal of Artificial Organs Editorial Committee.
Sawa Y, Matsumiya G, Matsuda K, Tatsumi E, Abe T, Fukunaga K, Ichiba S, Taguchi T, Kokubo K, Masuzawa T, Myoui A, Nishimura M, Nishimura T, Nishinaka T, Okamoto E, Tokunaga S, Tomo T, Tsukiya T, Yagi Y, Yamaoka T. Sawa Y, et al. J Artif Organs. 2019 Mar;22(1):1-5. doi: 10.1007/s10047-019-01094-7. Epub 2019 Feb 23. J Artif Organs. 2019. PMID: 30796540 Review. No abstract available. - Hydrogel modification of 3D printing hybrid tracheal scaffold to construct an orthotopic transplantation.
Pan S, Shen Z, Xia T, Pan Z, Dan Y, Li J, Shi H. Pan S, et al. Am J Transl Res. 2022 May 15;14(5):2910-2925. eCollection 2022. Am J Transl Res. 2022. PMID: 35702071 Free PMC article. - Basic Science Perspective on Engineering and Modeling the Large Airways.
Gautam LK, Harriott NC, Caceres AM, Ryan AL. Gautam LK, et al. Adv Exp Med Biol. 2023;1413:73-106. doi: 10.1007/978-3-031-26625-6_5. Adv Exp Med Biol. 2023. PMID: 37195527 - The Growing Medical Need for Tracheal Replacement: Reconstructive Strategies Should Overcome Their Limits.
Adamo D, Galaverni G, Genna VG, Lococo F, Pellegrini G. Adamo D, et al. Front Bioeng Biotechnol. 2022 May 9;10:846632. doi: 10.3389/fbioe.2022.846632. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35646864 Free PMC article. Review. - Cartilaginous Extracellular Matrix Enriched with Human Gingival Mesenchymal Stem Cells Derived "Matrix Bound Extracellular Vesicles" Enabled Functional Reconstruction of Tracheal Defect.
Zeng T, Yuan P, Liang L, Zhang X, Zhang H, Wu W. Zeng T, et al. Adv Sci (Weinh). 2022 Jan;9(2):e2102735. doi: 10.1002/advs.202102735. Epub 2021 Nov 28. Adv Sci (Weinh). 2022. PMID: 34841733 Free PMC article.
References
- J Thorac Cardiovasc Surg. 2001 Feb;121(2):241-8 - PubMed
- Clin Transplant. 2007 Sep-Oct;21(5):668-74 - PubMed
- Transplantation. 2005 Apr 27;79(8):861-8 - PubMed
- Curr Opin Immunol. 1999 Oct;11(5):527-31 - PubMed
- J Biomed Biotechnol. 2009;2009:412598 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical