An Investigation Into the Effects of Excluding the Catch Phase of the Power Clean on Force-Time Characteristics During Isometric and Dynamic Tasks: An Intervention Study - PubMed (original) (raw)

Clinical Trial

An Investigation Into the Effects of Excluding the Catch Phase of the Power Clean on Force-Time Characteristics During Isometric and Dynamic Tasks: An Intervention Study

Paul Comfort et al. J Strength Cond Res. 2018 Aug.

Abstract

Comfort, P, Dos'Santos, T, Thomas, C, McMahon, JJ, and Suchomel, TJ. An investigation into the effects of excluding the catch phase of the power clean on force-time characteristics during isometric and dynamic tasks: an intervention study. J Strength Cond Res 32(8): 2116-2129, 2018-The aims of this study were to compare the effects of the exclusion or inclusion of the catch phase during power clean (PC) derivatives on force-time characteristics during isometric and dynamic tasks, after two 4-week mesocycles of resistance training. Two strength matched groups completed the twice-weekly training sessions either including the catch phase of the PC derivatives (Catch group: n = 16; age 19.3 ± 2.1 years; height 1.79 ± 0.08 m; body mass 71.14 ± 11.79 kg; PC 1 repetition maximum [1RM] 0.93 ± 0.15 kg·kg) or excluding the catch phase (Pull group: n = 18; age 19.8 ± 2.5 years; height 1.73 ± 0.10 m; body mass 66.43 ± 10.13 kg; PC 1RM 0.91 ± 0.18 kg·kg). The Catch and Pull groups both demonstrated significant (p ≤ 0.007, power ≥0.834) and meaningful improvements in countermovement jump height (10.8 ± 12.3%, 5.2 ± 9.2%), isometric mid-thigh pull performance (force [F]100: 14.9 ± 17.2%, 15.5 ± 16.0%, F150: 16.0 ± 17.6%, 16.2 ± 18.4%, F200: 15.8 ± 17.6%, 17.9 ± 18.3%, F250: 10.0 ± 16.1%,10.9 ± 14.4%, peak force: 13.7 ± 18.7%, 9.7 ± 16.3%), and PC 1RM (9.5 ± 6.2%, 8.4 ± 6.1%), before and after intervention, respectively. In contrast to the hypotheses, there were no meaningful or significant differences in the percentage change for any variables between groups. This study clearly demonstrates that neither the inclusion nor exclusion of the catch phase of the PC derivatives results in any preferential adaptations over two 4-week, in-season strength and power, mesocycles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources