Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria - PubMed (original) (raw)
. 2018 Sep;109(6):812-825.
doi: 10.1111/mmi.14077. Epub 2018 Sep 15.
Affiliations
- PMID: 29995992
- DOI: 10.1111/mmi.14077
Free article
Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria
Jade M Noble et al. Mol Microbiol. 2018 Sep.
Free article
Abstract
The size of whole Rhodobacter sphaeroides prevents 3D visualization of centermost chromatophores in their native environment. This study combines cryo-focused ion beam milling with cryo-electron tomography to probe vesicle architecture both in situ and in 3D. Developing chromatophores are membrane-bound buds that remain in topological continuity with the cytoplasmic membrane and detach into vesicles when mature. Mature chromatophores closest to the cell wall are typically isolated vesicles, whereas centermost chromatophores are either linked to neighboring chromatophores or contain smaller, budding structures. Isolated chromatophores comprised a minority of centermost chromatophores. Connections between vesicles in growing bacteria are through ~10 nm-long, ~5 nm-wide linkers, and are thus physical rather than functional in terms of converting photons to ATP. In cells in the stationary phase, chromatophores fuse with neighboring vesicles, lose their spherical structure, and greatly increase in volume. The fusion and morphological changes seen in older bacteria are likely a consequence of the aging process, and are not representative of connectivity in healthy R. sphaeroides. Our results suggest that chromatophores can adopt either isolated or connected morphologies within a single bacterium. Revealing the organization of chromatophore vesicles throughout the cell is an important step in understanding the photosynthetic mechanisms in R. sphaeroides.
© 2018 John Wiley & Sons Ltd.
Similar articles
- Comparison, by freeze-fracture electron microscopy, of chromatophores, spheroplast-derived membrane vesicles, and whole cells of Rhodopseudomonas sphaeroides.
Lommen MA, Takemoto J. Lommen MA, et al. J Bacteriol. 1978 Nov;136(2):730-41. doi: 10.1128/jb.136.2.730-741.1978. J Bacteriol. 1978. PMID: 309467 Free PMC article. - Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach.
Verméglio A, Lavergne J, Rappaport F. Verméglio A, et al. Photosynth Res. 2016 Jan;127(1):13-24. doi: 10.1007/s11120-014-0068-7. Epub 2014 Dec 16. Photosynth Res. 2016. PMID: 25512104 - Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores. A probe of the organization of the photosynthetic apparatus.
Monger TG, Parson WW. Monger TG, et al. Biochim Biophys Acta. 1977 Jun 9;460(3):393-407. doi: 10.1016/0005-2728(77)90080-9. Biochim Biophys Acta. 1977. PMID: 301747 No abstract available. - Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
Woronowicz K, Harrold JW, Kay JM, Niederman RA. Woronowicz K, et al. J Mol Microbiol Biotechnol. 2013;23(1-2):48-62. doi: 10.1159/000346520. Epub 2013 Apr 18. J Mol Microbiol Biotechnol. 2013. PMID: 23615195 Review. - Organization and expression of genes for photosynthetic pigments-protein complexes in photosynthetic bacteria.
Zhu YS, Hearst JE. Zhu YS, et al. Biotechnology. 1989;12:257-91. doi: 10.1016/b978-0-409-90068-2.50019-8. Biotechnology. 1989. PMID: 2653478 Review. No abstract available.
Cited by
- Light energy transduction in liposome-based artificial cells.
Albanese P, Mavelli F, Altamura E. Albanese P, et al. Front Bioeng Biotechnol. 2023 Mar 29;11:1161730. doi: 10.3389/fbioe.2023.1161730. eCollection 2023. Front Bioeng Biotechnol. 2023. PMID: 37064236 Free PMC article. Review. - Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells.
Altamura E, Albanese P, Marotta R, Milano F, Fiore M, Trotta M, Stano P, Mavelli F. Altamura E, et al. Proc Natl Acad Sci U S A. 2021 Feb 16;118(7):e2012170118. doi: 10.1073/pnas.2012170118. Proc Natl Acad Sci U S A. 2021. PMID: 33526592 Free PMC article. - Sulfoquinovosyl diacylglycerol is required for dimerisation of the Rhodobacter sphaeroides reaction centre-light harvesting 1 core complex.
Martin EC, Bowie AGM, Wellfare Reid T, Neil Hunter C, Hitchcock A, Swainsbury DJK. Martin EC, et al. Biochem J. 2024 Jul 3;481(13):823-838. doi: 10.1042/BCJ20240125. Biochem J. 2024. PMID: 38780411 Free PMC article. - Adaptation to an Intracellular Lifestyle by a Nitrogen-Fixing, Heterocyst-Forming Cyanobacterial Endosymbiont of a Diatom.
Flores E, Romanovicz DK, Nieves-Morión M, Foster RA, Villareal TA. Flores E, et al. Front Microbiol. 2022 Mar 17;13:799362. doi: 10.3389/fmicb.2022.799362. eCollection 2022. Front Microbiol. 2022. PMID: 35369505 Free PMC article. - The role of CenKR in the coordination of Rhodobacter sphaeroides cell elongation and division.
Lakey BD, Alberge F, Parrell D, Wright ER, Noguera DR, Donohue TJ. Lakey BD, et al. mBio. 2023 Aug 31;14(4):e0063123. doi: 10.1128/mbio.00631-23. Epub 2023 Jun 7. mBio. 2023. PMID: 37283520 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources