Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria - PubMed (original) (raw)

. 2018 Sep;109(6):812-825.

doi: 10.1111/mmi.14077. Epub 2018 Sep 15.

Affiliations

Free article

Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria

Jade M Noble et al. Mol Microbiol. 2018 Sep.

Free article

Abstract

The size of whole Rhodobacter sphaeroides prevents 3D visualization of centermost chromatophores in their native environment. This study combines cryo-focused ion beam milling with cryo-electron tomography to probe vesicle architecture both in situ and in 3D. Developing chromatophores are membrane-bound buds that remain in topological continuity with the cytoplasmic membrane and detach into vesicles when mature. Mature chromatophores closest to the cell wall are typically isolated vesicles, whereas centermost chromatophores are either linked to neighboring chromatophores or contain smaller, budding structures. Isolated chromatophores comprised a minority of centermost chromatophores. Connections between vesicles in growing bacteria are through ~10 nm-long, ~5 nm-wide linkers, and are thus physical rather than functional in terms of converting photons to ATP. In cells in the stationary phase, chromatophores fuse with neighboring vesicles, lose their spherical structure, and greatly increase in volume. The fusion and morphological changes seen in older bacteria are likely a consequence of the aging process, and are not representative of connectivity in healthy R. sphaeroides. Our results suggest that chromatophores can adopt either isolated or connected morphologies within a single bacterium. Revealing the organization of chromatophore vesicles throughout the cell is an important step in understanding the photosynthetic mechanisms in R. sphaeroides.

© 2018 John Wiley & Sons Ltd.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources