Berberine, a natural plant alkaloid, synergistically sensitizes human liver cancer cells to sorafenib - PubMed (original) (raw)

. 2018 Sep;40(3):1525-1532.

doi: 10.3892/or.2018.6552. Epub 2018 Jul 10.

Affiliations

Berberine, a natural plant alkaloid, synergistically sensitizes human liver cancer cells to sorafenib

Yuezhao Huang et al. Oncol Rep. 2018 Sep.

Abstract

Sorafenib resistance is one of the major factors affecting the prognosis of patients with hepatocellular carcinoma (HCC). Increasing evidence has indicated that certain traditional medicines can enhance the sensitivity of cancer cells to sorafenib. Berberine, an isoquinoline alkaloid, has been demonstrated to possess antitumor properties against various malignancies. However, the synergistic effect of the combination of berberine and sorafenib in HCC remains unknown. The aim of the present study was to determine the effects of berberine and sorafenib combination on the growth of liver cancer cells. Initially, it was observed that the combination of sorafenib and berberine exerted a synergistic inhibitory effect on the proliferation of SMMC‑7721 and HepG2 cells in a dose‑ and time‑dependent manner by an MTS assay. Edu staining and colony formation assays also revealed that the combination of 100 µM berberine and 4 µM sorafenib exhibited a significant anti‑proliferation effect on SMMC‑7721 and HepG2 cells. Furthermore, western blotting assay indicated that the expressions levels of cleaved poly(ADP‑ribose) polymerase and cleaved caspase‑3 increased, while those of the anti‑apoptotic protein B‑cell lymphoma 2 and vascular endothelial growth factor decreased. To the best of our knowledge, this is the first study to demonstrate that berberine sensitized liver cancer cells to sorafenib treatment. These results suggest that berberine combined with sorafenib is able to inhibit the proliferation of liver cancer cells and induce apoptosis, which provides evidence for further clinical investigation in HCC patients with sorafenib resistance.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources