Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat - PubMed (original) (raw)
- PMID: 3005016
- DOI: 10.1007/BF00239522
Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat
P L Gabbott et al. Exp Brain Res. 1986.
Abstract
Cortical neurons using the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) are known to contribute to the formation of neuronal receptive field properties in the primary visual cortex (area 17) of the cat. In order to determine the cortical location of GABA containing neurons and what proportion of cortical neurons might use GABA as their transmitter, we analysed their distribution quantitatively using a post-embedding GABA immunohistochemical method on semithin sections in conjunction with stereological procedures. The mean total numerical density of neurons in the medial bank of the lateral gyrus (area 17) of five adult cats was 54,210 +/- 634 per mm3 (mean +/- SD). An average of 20.60 +/- 0.48% (mean +/- SEM) of the neurons were immunoreactive for GABA. The density of GABA-immunoreactive neurons was somewhat higher in layers II, III and upper VI, compared with layers I, IV, V and lower VI, with the lowest density being in layer V. The proportion of GABA-immunopositive cells relative to immunonegative neurons gradually decreased from the pia to the white matter. Layer I was different from other layers in that approximately 95% of its neurons were GABA-immunoreactive. The results allowed the calculation of the absolute numbers of GABAergic neurons in each layer under a given cortical surface area and could provide the basis for the quantitative treatment of cortical circuits.
Similar articles
- Laminar distribution of GABA-immunoreactive neurons and processes in area 18 of the cat.
Matsubara JA, Nance DM, Cynader MS. Matsubara JA, et al. Brain Res Bull. 1987 Jan;18(1):121-6. doi: 10.1016/0361-9230(87)90040-2. Brain Res Bull. 1987. PMID: 3828838 - Prenatal development of GABA-immunoreactive neurons in the human striate cortex.
Yan XX, Zheng DS, Garey LJ. Yan XX, et al. Brain Res Dev Brain Res. 1992 Feb 21;65(2):191-204. doi: 10.1016/0165-3806(92)90179-z. Brain Res Dev Brain Res. 1992. PMID: 1572064 - Development of GABA-containing neurons in the visual cortex.
Parnavelas JG. Parnavelas JG. Prog Brain Res. 1992;90:523-37. doi: 10.1016/s0079-6123(08)63629-8. Prog Brain Res. 1992. PMID: 1631311 Review. No abstract available. - Organization and plasticity of GABA neurons and receptors in monkey visual cortex.
Hendry S, Carder RK. Hendry S, et al. Prog Brain Res. 1992;90:477-502. doi: 10.1016/s0079-6123(08)63627-4. Prog Brain Res. 1992. PMID: 1321463 Review.
Cited by
- Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons.
Lambolez B, Ropert N, Perrais D, Rossier J, Hestrin S. Lambolez B, et al. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1797-802. doi: 10.1073/pnas.93.5.1797. Proc Natl Acad Sci U S A. 1996. PMID: 8700838 Free PMC article. - Local Circuits for Contrast Normalization and Adaptation Investigated with Two-Photon Imaging in Cat Primary Visual Cortex.
Keller AJ, Martin KA. Keller AJ, et al. J Neurosci. 2015 Jul 8;35(27):10078-87. doi: 10.1523/JNEUROSCI.0906-15.2015. J Neurosci. 2015. PMID: 26157005 Free PMC article. - Islet1 Precursors Contribute to Mature Interneuron Subtypes in Mouse Neocortex.
Siddiqi F, Trakimas AL, Joseph DJ, Lippincott ML, Marsh ED, Wolfe JH. Siddiqi F, et al. Cereb Cortex. 2021 Oct 1;31(11):5206-5224. doi: 10.1093/cercor/bhab152. Cereb Cortex. 2021. PMID: 34228108 Free PMC article.
References
- J Neurocytol. 1983 Aug;12(4):617-38 - PubMed
- J Comp Neurol. 1973 May 1;149(1):73-81 - PubMed
- J Comp Neurol. 1983 Jul 1;217(3):337-44 - PubMed
- J Histochem Cytochem. 1985 Mar;33(3):229-39 - PubMed
- J Histochem Cytochem. 1985 Mar;33(3):249-57 - PubMed
MeSH terms
Substances
LinkOut - more resources
Miscellaneous