Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation of ipsilateral and contralateral neocortex - PubMed (original) (raw)

Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation of ipsilateral and contralateral neocortex

C J Wilson. Brain Res. 1986.

Abstract

Postsynaptic potentials were evoked in neostriatal neurons by stimulation of the ipsilateral and contralateral medial agranular frontal cortical field (AGm) in the rat. This cortical region is known to project bilaterally to the dorsal lateral head of the caudate-putamen of rats. Ipsilateral stimulation of AGm should excite all types of corticostriatal neurons projecting to neostriatal neurons in the corresponding area in neostriatum, while stimulation of the same cortical area on the side contralateral to the recording should evoke synaptic potentials from a more restricted subpopulation of crossed corticostriatal neurons. Neostriatal neuronal responses were recorded intracellularly and spiny projection neurons identified by intracellular staining with horseradish peroxidase. The initial EPSP response to contralateral stimulation was similar to that evoked from the ipsilateral side, except for the absence of a relatively small short latency component responsible for the earliest part of the response to ipsilateral cortical stimulation. Comparison with previous findings indicated that this earliest EPSP component was due to activation of fast-conducting descending cortical efferents with collateral projections exclusively to the ipsilateral neostriatum. Stimulation of contralateral neostriatum evoked responses identical to those obtained using stimulation of contralateral neocortex. Analyses of these responses indicated that both EPSPs arise from activation of the same population of fibers. Stimulation of the contralateral internal capsule just caudal to neostriatum was not effective in evoking the EPSP. Chronic hemidecortication did not change the shape of the EPSP evoked from the intact contralateral side, but reduced its amplitude by approximately one half. These observations indicate that contralaterally projecting corticostriatal neurons in the rat project bilaterally in neostriatum, have axonal branches to the contralateral cerebral cortex as well as neostriatum, and converge onto neostriatal neurons that also receive input from the corresponding cortical region on the ipsilateral side.

PubMed Disclaimer

Publication types

MeSH terms