Growth factors activate the bumetanide-sensitive Na+/K+/Cl-cotransport in hamster fibroblasts - PubMed (original) (raw)

. 1986 May 15;261(14):6177-83.

Free article

Growth factors activate the bumetanide-sensitive Na+/K+/Cl-cotransport in hamster fibroblasts

S Paris et al. J Biol Chem. 1986.

Free article

Abstract

alpha-Thrombin, a potent mitogen for the hamster fibroblast cell line CCL 39, stimulates by approximately 3-fold 86Rb+ uptake in a mutant lacking the Na+/H+ antiport activity (PS 120). The major component of this stimulated 86Rb+ (K+) uptake is a bumetanide-sensitive flux (IC50 = 0.4 microM), which accounts for 50% of total K+ uptake in Go-arrested cells and is approximately 4-fold stimulated by maximal thrombin concentrations (EC50 = 5 X 10(-4) units/ml). This bumetanide-sensitive 86Rb+ uptake represents a Na+/K+/Cl- cotransport, as indicated by its dependence on extracellular Na+ and Cl- and by the existence in PS 120 cells of a bumetanide-sensitive K+-dependent 22Na+ uptake. The stimulation reaches its maximum within 2 min, is reduced at acidic intracellular pH values (half-maximal at pHi = 6.8), and can also be induced, to a lesser extent, by EGF and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, the effects of which are nearly additive. In contrast, preincubation with 12-O-tetradecanoylphorbol 13-acetate results in inhibition of thrombin- and EGF-induced stimulations, suggesting that activated protein kinase C might exert a feedback inhibitory control. This study clearly demonstrates that the growth factor-induced activation of the Na+/K+/Cl- cotransport is separated from the activation of the Na+/H+ antiport. However, activation of this cotransporter does not seem to play a major role in the mitogenic signaling pathway since its complete inhibition with bumetanide reduces only by 25-30% reinitiation of DNA synthesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources