The characterization and cloning of a gluconate (gnt) operon of Bacillus subtilis - PubMed (original) (raw)
The characterization and cloning of a gluconate (gnt) operon of Bacillus subtilis
Y Fujita et al. J Gen Microbiol. 1986 Jan.
Abstract
The enzymes involved in gluconate utilization in Bacillus subtilis seemed to be gluconate permease and gluconate kinase. Several mutants unable to grow on gluconate were isolated. The mutations they harboured (gnt) were clustered between iol-6 and fdp-74 on the B. subtilis chromosome (a tentative map order of gnt-10, gnt-4, gnt-26, gnt-23 and gnt-9 was obtained). The gnt-10 mutation seemed to be located within the structural gene of the kinase, and the gnt-23 and gnt-26 mutations seemed to be within that of the permease. An EcoRI fragment (4.5 MDal) containing an intact gluconate (gnt) operon consisting of these two structural genes was cloned in phage phi 105 by prophage transformation and was mapped physically. The physical location of the mutations coincided with their order on the genetic map. The HindIII-A fragment (2.4 MDal), which corrects all the gnt mutations, was subcloned in plasmid pC194. The fragment contained the structural genes for the gluconate permease and kinase, but not the regulatory region of the gluconate operon.
Similar articles
- The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator.
Fujita Y, Fujita T. Fujita Y, et al. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4524-8. doi: 10.1073/pnas.84.13.4524. Proc Natl Acad Sci U S A. 1987. PMID: 3037520 Free PMC article. - Effect of mutations causing gluconate kinase or gluconate permease deficiency on expression of the Bacillus subtilis gnt operon.
Fujita Y, Fujita T. Fujita Y, et al. J Bacteriol. 1989 Mar;171(3):1751-4. doi: 10.1128/jb.171.3.1751-1754.1989. J Bacteriol. 1989. PMID: 2537826 Free PMC article. - Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis.
Fujita Y, Fujita T, Miwa Y, Nihashi J, Aratani Y. Fujita Y, et al. J Biol Chem. 1986 Oct 15;261(29):13744-53. J Biol Chem. 1986. PMID: 3020045 - [Gluconate operon of Bacillus subtilis: a model for enzyme induction of gram-positive bacteria].
Fujita Y. Fujita Y. Seikagaku. 1988 Jun;60(6):436-41. Seikagaku. 1988. PMID: 3150421 Review. Japanese. No abstract available. - DNA methyltransferases of Bacillus subtilis and its bacteriophages.
Günthert U, Trautner TA. Günthert U, et al. Curr Top Microbiol Immunol. 1984;108:11-22. doi: 10.1007/978-3-642-69370-0_2. Curr Top Microbiol Immunol. 1984. PMID: 6325095 Review. No abstract available.
Cited by
- The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator.
Fujita Y, Fujita T. Fujita Y, et al. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4524-8. doi: 10.1073/pnas.84.13.4524. Proc Natl Acad Sci U S A. 1987. PMID: 3037520 Free PMC article. - Overreplication of the origin region in the dnaB37 mutant of Bacillus subtilis: postinitiation control of chromosomal replication.
Henckes G, Harper F, Levine A, Vannier F, Séror SJ. Henckes G, et al. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8660-4. doi: 10.1073/pnas.86.22.8660. Proc Natl Acad Sci U S A. 1989. PMID: 2554322 Free PMC article. - The E. coli molecular phenotype under different growth conditions.
Caglar MU, Houser JR, Barnhart CS, Boutz DR, Carroll SM, Dasgupta A, Lenoir WF, Smith BL, Sridhara V, Sydykova DK, Vander Wood D, Marx CJ, Marcotte EM, Barrick JE, Wilke CO. Caglar MU, et al. Sci Rep. 2017 Apr 18;7:45303. doi: 10.1038/srep45303. Sci Rep. 2017. PMID: 28417974 Free PMC article. - Efficient utilization and operation of the gluconate-inducible system of the promoter of the Bacillus subtilis gnt operon in Escherichia coli.
Miwa Y, Fujita Y. Miwa Y, et al. J Bacteriol. 1987 Nov;169(11):5333-5. doi: 10.1128/jb.169.11.5333-5335.1987. J Bacteriol. 1987. PMID: 3117776 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Research Materials