Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis - PubMed (original) (raw)
Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis
Jin-Hua Ran et al. Mol Phylogenet Evol. 2018 Dec.
Abstract
Pinaceae comprises 11 genera, and represents the largest family of conifers with an extensive wild distribution in the Northern Hemisphere. Intergeneric relationships of Pinaceae have been investigated using many morphological characters and molecular markers, but phylogenetic positions of four genera, including Cathaya, Cedrus, Nothotsuga and Pseudolarix, remain controversial or have not been completely resolved. To completely resolve the intergeneric relationships of Pinaceae, we conducted a comparative transcriptomic study of 14 species representing all Pinaceae genera. Multiple data sets, containing up to 6,369,681 sites across 4676 loci, were analyzed using concatenation and coalescent methods. Our study generated a robust topology, which divides Pinaceae into two clades, one (pinoid) including Cathaya, Larix, Picea, Pinus, and Pseudotsuga, and the other (abietoid) including Abies, Cedrus, Keteleeria, Nothotsuga, Pseudolarix, and Tsuga. Cathaya and Pinus form a clade sister to Picea; Cedrus is sister to the remaining abietoid genera, and the two genera Nothotsuga and Tsuga form a clade sister to Pseudolarix. The discordant positions of Cathaya, Cedrus and Pseudolarix in different gene trees could be explained by ancient radiation and/or molecular homoplastic evolution. The hybrid origin hypothesis of Nothotsuga is not supported. Based on molecular dating, extant Pinaceae genera diverged since about 206 Mya, earlier than the break-up of Pangea, and the divergence among the pinoid genera occurred earlier than the split among the abietoid genera. Moreover, our study indicates that two radiation events occurred in the evolution of Pinaceae genera, and some important morphological characters evolved multiple times based on ancestral state reconstruction.
Keywords: Cathaya; Cedrus; Convergence; Divergence times; Phylogenomics; Pinaceae.
Copyright © 2018 Elsevier Inc. All rights reserved.
Similar articles
- Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies.
Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM. Lin CP, et al. Genome Biol Evol. 2010;2:504-17. doi: 10.1093/gbe/evq036. Epub 2010 Jul 2. Genome Biol Evol. 2010. PMID: 20651328 Free PMC article. - Abietoid seed fatty acid compositions--a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae.
Wolff RL, Lavialle O, Pédrono F, Pasquier E, Destaillats F, Marpeau AM, Angers P, Aitzetmüller K. Wolff RL, et al. Lipids. 2002 Jan;37(1):17-26. doi: 10.1007/s11745-002-0859-5. Lipids. 2002. PMID: 11876259 Review. - Karyotype evolution in the Pinaceae: implication with molecular phylogeny.
Nkongolo KK, Mehes-Smith M. Nkongolo KK, et al. Genome. 2012 Nov;55(11):735-53. doi: 10.1139/g2012-061. Epub 2012 Oct 25. Genome. 2012. PMID: 23199570 Review. - Revisiting the Plastid Phylogenomics of Pinaceae with Two Complete Plastomes of Pseudolarix and Tsuga.
Sudianto E, Wu CS, Lin CP, Chaw SM. Sudianto E, et al. Genome Biol Evol. 2016 Jun 27;8(6):1804-11. doi: 10.1093/gbe/evw106. Genome Biol Evol. 2016. PMID: 27352945 Free PMC article. - Cytogenetic and molecular characterization of the Abies alba genome and its relationship with other members of the Pinaceae.
Puizina J, Sviben T, Krajacić-Sokol I, Zoldos-Pećnik V, Siljak-Yakovlev S, Papes D, Besendorfer V. Puizina J, et al. Plant Biol (Stuttg). 2008 Mar;10(2):256-67. doi: 10.1111/j.1438-8677.2007.00018.x. Plant Biol (Stuttg). 2008. PMID: 18304200
Cited by
- A novel cupulate seed plant, Xadzigacalix quatsinoensis gen. et sp. nov., provides new insight into the Mesozoic radiation of gymnosperms.
Klymiuk AA, Rothwell GW, Stockey RA. Klymiuk AA, et al. Am J Bot. 2022 Jun;109(6):966-985. doi: 10.1002/ajb2.1853. Epub 2022 Jun 14. Am J Bot. 2022. PMID: 35435244 Free PMC article. - The Deep Evolutionary Relationships of the Morphologically Heterogeneous Nolinoideae (Asparagaceae) Revealed by Transcriptome Data.
Meng R, Luo LY, Zhang JY, Zhang DG, Nie ZL, Meng Y. Meng R, et al. Front Plant Sci. 2021 Jan 14;11:584981. doi: 10.3389/fpls.2020.584981. eCollection 2020. Front Plant Sci. 2021. PMID: 33519845 Free PMC article. - Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties.
Garzoli S, Masci VL, Caradonna V, Tiezzi A, Giacomello P, Ovidi E. Garzoli S, et al. Pharmaceuticals (Basel). 2021 Feb 8;14(2):134. doi: 10.3390/ph14020134. Pharmaceuticals (Basel). 2021. PMID: 33567501 Free PMC article. - Phylotranscriptomics and evolution of key genes for terpene biosynthesis in Pinaceae.
Jiang K, Du C, Huang L, Luo J, Liu T, Huang S. Jiang K, et al. Front Plant Sci. 2023 Feb 17;14:1114579. doi: 10.3389/fpls.2023.1114579. eCollection 2023. Front Plant Sci. 2023. PMID: 36875589 Free PMC article. - Phylogeny, Divergence Time Estimation and Biogeography of the Genus Onnia (Basidiomycota, Hymenochaetaceae).
Zhao H, Zhou M, Liu XY, Wu F, Dai YC. Zhao H, et al. Front Microbiol. 2022 Jul 7;13:907961. doi: 10.3389/fmicb.2022.907961. eCollection 2022. Front Microbiol. 2022. PMID: 35875515 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources